PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption with chemical reaction in porous catalyst pellets under alternate concentration fields. Uniform temperature case

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work concerns the dynamic behaviour of a porous, isothermal catalyst pellet in which a simultaneous chemical reaction, diffusion and adsorption take place. The impact of the reactant adsorption onto the pellet dynamics was evaluated. A linear isotherm and a non-linear Freundlich isotherm were considered. Responses of the pellet to sinusoidal variations of the reactant concentration in a bulk gas were examined. It was demonstrated that the dynamics of the pellet is significantly affected both by accounting for the adsorption and by the frequency of the bulk concentration variations. The sorption phenomenon causes damping of the concentration oscillations inside the pellet and damping of its effectiveness factor oscillations. Depending on the frequency of the concentration oscillations in the bulk, the remarkable oscillations can involve an entire volume of the pellet or its portion in the vicinity of the external surface.
Rocznik
Strony
473--484
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Department of Chemical and Process Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
autor
  • Cracow University of Technology, Department of Chemical and Process Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Bibliografia
  • 1. Burghardt A., Berezowski M., 2003. Periodic solutions in a porous catalyst pellet - Homoclinic orbits. Chem. Eng. Sci., 58, 2657-2670. DOI: 10.1016/S0009-2509(03)00120-9.
  • 2. Dietrich W., Lawrence P.S., Grünewald M., Agar D.W., 2005. Theoretical studies on multifunctional catalysts with integrated adsorption sites. Chem. Eng. J., 107, 103–111. DOI: 10.1016/j.cej.2004.12.016.
  • 3. Gear C. W., 1971. Algorithm 407: DIFSUB for solution of ordinary differential equations [D2]. Mag. Commun. ACM, 14, 185-190. DOI: 10.1145/362566.362573.
  • 4. Grünewald M., Agar D.W., 2004. Enhanced catalyst performance using integrated structured functionalities. Chem. Eng. Sci., 59, 5519–5526. DOI: 10.1016/j.ces.2004.07.072.
  • 5. Il’in A., Luss D., 1992. Wrong-way behavior of packed bed reactors: Influence of reactant adsorption on support. AIChE J., 38, 1609-1617. DOI: 10.1002/aic.690381011.
  • 6. Lee H.H., 1985. Heterogeneous reactor design. Butterworth Publishers, Boston – Toronto.
  • 7. Lugo E.L., Wilhite B.A., 2016. A theoretical comparison of multifunctional catalyst for sorption-enhanced reforming process. Chem. Eng. Sci., 150, 1–15. DOI: 10.1016/j.ces.2016.04.011.
  • 8. Luss D., 1974. The influence of capacitance terms on the stability of lumped and distributed parameter systems. Chem. Eng. Sci., 29, 1832-1836. DOI: 10.1016/0009-2509(74)87045-4.
  • 9. Ray W.H., Hastings S.P., 1980. The influence of the Lewis number on the dynamics of chemically reacting systems. Chem. Eng. Sci., 35, 589-595. DOI: 10.1016/0009-2509(80)80007-8.
  • 10. Seydel R., 2010. Practical bifurcation and stability analysis. Springer, New York London.
  • 11. Shampine L. F., 1994. ODE solvers and the method of lines. Numer. Methods Partial Differential Eq. 10, 739-755. DOI: 10.1002/num.1690100608.
  • 12. Szarawara J., Skrzypek J., 1980. Podstawy inżynierii reaktorów chemicznych. WNT, Warszawa.
  • 13. Szukiewicz M. K., 2002. An approximate model for diffusion and reaction in a porous pellet. Chem. Eng. Sci., 57, 1451-1457. DOI: 10.1016/S0009-2509(02)00055-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83b1d89c-9eb6-4556-a469-32edb51a5fa4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.