PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polypropylene tensile test under dynamic loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a testing method is developed to determine the dynamic stress–strain responses of the polypropylene (PP) under high strain rate uniaxial tension conditions. The main objective of this study is to determine the dynamical behaviour of PP materials under transitory loading. To this effect, an experimental machine using a mixed technique of Hopkinson tension bar and a sensing block system is developed in order to study the dynamic tensile stress–strain behaviour of the low-strength and low mechanical impedance specimen. A pendulum pulse technique is employed in dynamic tension experiments to ensure that valid experimental conditions are satisfied. Results show that, compared with quasi-static behaviour, dynamic tension causes smaller failure strains. Among other, the experimental set-up, mechanical characteristic, dynamic tensile specimen, quasi-static tensile test: stress–strain curve for 0.8 s-1 strain rate, the incident and the transmitted waves recorded by the stain gauges located on the bar and the sensing block under a dynamic tensile test, the axial strain on the specimen versus time under a dynamic tensile test, the axial stress on the specimen versus time under a dynamic tensile test, dynamic tensile test: stress-strain curves of the PPC7712 polymer for various strain rates, the specimens after rupture quasi-static test and dynamic test are presented in the paper.
Twórcy
autor
  • National School of Engineers of Sfax, University of Sfax Analysis Laboratory of Electro Mechanical Systems BP.1173. W. 3038 Sfax, Tunisia fax: +216 74 275 595
autor
  • National School of Engineers of Sfax, University of Sfax Analysis Laboratory of Electro Mechanical Systems BP.1173. W. 3038 Sfax, Tunisia fax: +216 74 275 595
autor
  • National School of Engineers of Sfax, University of Sfax Analysis Laboratory of Electro Mechanical Systems BP.1173. W. 3038 Sfax, Tunisia fax: +216 74 275 595
Bibliografia
  • [1] Hamoda, A. M. S., Hashmi, M. S. J., Testing of composite material at high rates of strain: advances and challenges, Journal of Material Processing and Technology, Vol. 77, pp. 327-336, 1998.
  • [2] Kolsky, H., An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proc. Roy. Soc., B62, pp. 676-700, London 1949.
  • [3] Q.M. Li, Y.B. Lu, H. Meng., Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests, International Journal of Impact Engineering, Vol. 36, Is. 12, pp. 1336-1345, 2009.
  • [4] Chou, S. C., Robertson, K. D., Rainey, J. H., The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics, Experimental Mechanics, Vol. 13, pp. 422-432, 1973.
  • [5] Walley, S. M., Field, J. E., Pope, P. H., Safford, N. A., A study of the rapid deformation behaviour of a range of polymers, Philosophical Transactions of the Royal Society of London, 328, pp. 1-33, 1989.
  • [6] Dioh, N. N., Leevers, P. S., Williams, J. G., Thickness effects in split Hopkinson pressure bar tests, Polymer, Vol. 34, pp. 4230-4234, 1993.
  • [7] Khlif, M., Masmoudi, N., Bradai, C., Grolleau, V., Rio, G., Development of a new testing method for polymer materials at high strain rate, Journal of Theoretical and Applied Mechanics, Vol. 38, No. 4, pp. 67-82, 2008.
  • [8] Tanimura, S., Evaluation of Accuracy in Measurement of Dynamic Load by Using Load Sensing Block Method, Proceedings of 4th International Symposium on Impact Engineering ISIE4, pp. 77-82, Kumamoto, Japan 2001.
  • [9] Grolleau, V., Guines, D., Umiastowski, S., Ragneau, E., Rio, G., Optimisation de dispositifs d’essais dynamiques sur machine d’impact et presse hydraulique, MECAMAT, Aussois, 2005.
  • [10] Chen, W., Lu, F., Zhou, B., A quartz-crystal-embedded split Hopkinson pressure bar for soft materials, Experimental Mechanics, 40, pp. 1-6, 2000.
  • [11] Frew, D. J., Forrestal, M. J., Chen, W., A split Hopkinson bar technique to determine compressive stress–strain data for rock materials, Experimental Mechanics, Vol. 41, pp. 40-46, 2001.
  • [12] Zrida, M., Laurent, H., Rio, G., Pimbert, S., Grolleau, V., Masmoudi, N., Bradai, C., Experimental and numerical study of polypropylene behavior using an hyper-visco-hysteresis constitutive law, Computational Materials Science 45 (2), pp. 516-527, 2009.
  • [13] Krevelen, S. D. W. V., Properties of Polymer, Elsevier, 2009.
  • [14] Krawczak, P., Essais mecanique des plastiques, Techniques de l'Ingenieur, AM, 3, pp. 510, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83ab4a4a-3073-4391-ab65-f6d1e2455a32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.