PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation of the Wettability of Protective Glove Materials: A Biomimetic Perspective

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the present work was to evaluate the surface wettability of commercially available polymeric protective gloves, as well as to determine the effects of their surface topography in conjunction with the glove material on the hydrophobic properties of the final products, together with surface free energy (SFE) and work of adhesion. The geometric structures imparted to the surface led to different levels of hydrophobicity and SFE. Most of the studied materials were characterized by good wettability properties. It was shown that a textured surface topography affects wettability. The highest SFE was found for nitrile butadiene rubber materials. All materials except for nitrile butadiene rubber exhibited good hydrophobic properties and relatively low work of adhesion.
Rocznik
Strony
427--437
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
  • Central Institute for Labour Protection – National Research Institute, Department of Personal Protective Equipment, 48 Wierzbowa, Lodz, Poland
  • Technical University of Lodz Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego, Lodz, Poland
  • Technical University of Lodz Institute of Materials Science and Engineering, Lodz University of Technology, 1/15 Stefanowskiego, Lodz, Poland
  • Central Institute for Labour Protection – National Research Institute, Department of Personal Protective Equipment, 48 Wierzbowa, Lodz, Poland
Bibliografia
  • [1] Koradecka, D. (2012). Use of personal protective equipment in the workplace. Handbook of Human Factors and Ergonomics, USA John Wiley &Sons Press. pp. 895–910.
  • [2] Koradecka, D. (Ed.). (2010). Handbook of Occupational Safety and Health. 0 ed. CRC Press; doi: 10.1201/EBK1439806845.
  • [3] Irzmańska, E., Brochocka, A. (2017). Modified polimer materials for use in selected personal protective equipment products. Autex Research Journal, 17(1), 35–47. doi: 10.1515/aut-2015-0040.
  • [4] Irzmańska, E. (2015). The impact of different types of textile liners used in protective footwear on the subjective sensations of firefighters. Applied Ergonomics, 47, 34–42. doi: 10.1016/j.apergo.2014.08.013.
  • [5] Adamus-Włodarczyk, A., Bacciarelli-Ulacha, A., Irzmanska, E., Strąkowska, A., Masłowski, M. (2018). Evaluation of the elastomeric composite self-repair process for the construction of protective gloves. Fibres & Textiles in Eastern Europe, 26, 104–110. doi: 10.5604/01.3001.0012.1320.
  • [6] Regulation (EU) 2016/425 of the European Parliament and of the council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC.
  • [7] Guidance for the selection, use and maintenance of safety and occupational footwear and other personal protective equipment offering foot and leg protection. 2012.
  • [8] Krzemińska, S., Irzmańska, E. (2013). Preliminary evaluation of the ergonomic properties of gloves for protection against mineral oils based on manual dexterity tests. Journal of Testing and Evaluation, 41(6), 2012–0224. doi: 10.1520/JTE20120224.
  • [9] Wolfs, M., Darmanin, T., Guittard, F. (2013). Superhydrophobic polymers. In: John Wiley & Sons, Inc., (Ed.) Encyclopedia of polymer science and technology, Hoboken, NJ, USA: John Wiley & Sons, Inc.;, p. pst594. doi: 10.1002/0471440264.pst594.
  • [10] Taleb, S., Darmanin, T., Guittard, F. (2018). Switchable and reversible superhydrophobic surfaces: Part One. In: Kokturk, G., Altun, T. D. A. (Eds.) Interdisciplinary expansions in engineering and design with the power of biomimicry, InTech;. doi: 10.5772/intechopen.73022.
  • [11] Karasiewicz, J., Dutkiewicz, A., Maciejewski, H. (2014). Fluorokarbofunkcyjne silany jako prekursory materiałów silnie hydrofobowych. Chemik, 68(11), 945–956.
  • [12] Owens, D. K., Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13, 1741–1747. doi: 10.1002/app.1969.070130815.
  • [13] Firas, A., Michael, G., Georgina, K., Bronwyn, F., Paul, P. J. (2009). Adhesion of polymers. Progress in Polymer Science, 34(9), 948–968. doi: 10.1016/j.progpolymsci.2009.04.007.
  • [14] Brown, H. R. (2000). Adhesion between polymers and other substances - A review of bonding mechanisms, systems and testing. Materials Forum, 49–58.
  • [15] Liston, E. M., Martinu, L., Wertheimer, M. R. (1993). Plasma surface modification of polymers for improved adhesion: A critical review. Journal of Adhesion Science and Technology, 7, 1091–1127. doi: 10.1163/156856193×00600.
  • [16] Vincent, J. F. V., Bogatyreva, O. A., Bogatyrev, N. R., Bowyer, A., Pahl, A.-K. (2006). Biomimetics: Its practice and theory. Journal of Royal Society Interface, 3, 471–482. doi: 10.1098/rsif.2006.0127.
  • [17] Müller, R., Abaid, N., Boreyko, J. B., Fowlkes, C., Goel, A. K., Grimm, C., et al. (2018) Biodiversifying bioinspiration. Bioinspiration & Biomimetics, 13, 053001. doi: 10.1088/1748-3190/aac96a.
  • [18] Whitesides, G. M. (2015). Bioinspiration: Something for everyone. Interface Focus, 5, 20150031. doi: 10.1098/rsfs.2015.0031.
  • [19] Bhushan, B. (2009). Biomimetics: Lessons from nature–an overview. Philosophical Transactions of the Royal Society A, 367(1893), 1445–1486. doi: 10.1098/rsta.2009.0011.
  • [20] Choi, J., Hwang, J., Jeong, Y., Park, J. M., Lee, K. H., et al. (2015). Biomimetics: Forecasting the future of science, engineering, and medicine. International Journal of Nanomedicine, 10, 5701. doi: 10.2147/IJN.S83642.
  • [21] Fayemi, P. E., Wanieck, K., Zollfrank, C., Maranzana, N., Aoussat, A. (2017). Biomimetics: Process, tools and practice. Bioinspiration & Biomimetics, 12, 011002. doi: 10.1088/1748-3190/12/1/011002.
  • [22] Sun, M., Liang, A., Watson, G. S., Watson, J. A., Zheng, Y., et al. (2012). Influence of cuticle nanostructuring on the wetting behaviour/states on Cicada Wings. PLoS One, 7(4), e35056. doi: 10.1371/journal.pone.0035056.
  • [23] Barthlott, W., Schimmel, T., Wiersch, S., Koch, K., Brede, M., et al. (2010). The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Advanced Materials, 22(21), 2325–2328. doi: 10.1002/adma.200904411.
  • [24] Stańczyk, B., Dobrzański, L., Góra, K., Jach, K., Jagoda, A. (2015). Hydrofobowe pokrycia organiczne na gładkich podłożach i na podłożach z rozwiniętą powierzchnią. Materiały Elektroniczne, 43, 25–34.
  • [25] Guo, Z. G., Liu, W. (2007). Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 172, 1103–1112. doi: 10.1016/j.plantsci.2007.03.005.
  • [26] Wenzel, R. N. (1949). Surface roughness and contact angle. The Journal of Physical Chemistry A, 53, 1466–1467. doi: 10.1021/j150474a015.
  • [27] Rios, P. F., Dodiuk, H., Kenig, S., McCarthy, S., Dotan, A. (2006). The effects of nanostructure and composition on the hydrophobic properties of solid surfaces. Journal of Adhesion Science and Technology, 20(6), 563–587. doi: 10.1163/156856106777213302.
  • [28] Bhushan, B., Koch, K., Jung, Y. C. (2008). Nanostructures for superhydrophobicity and low adhesion. Soft Matter, 4(9), 1799–1804. doi: 10.1039/b808146h.
  • [29] Zalech, W. B. (2015). Samooczyszczające się powierzchnie. Eliksir, 2, 40–43.
  • [30] Simpson, J. T., Hunter, S. R., Aytug, T. (2015). Superhydrophobic materials and coatings: A review. Reports on Progress in Physics, 78(8), 086501. doi: 10.1088/0034-4885/78/8/086501.
  • [31] Wolfs, M., Darmanin, T., Guittard, F. (2013). Superhydrophobic fibrous polymers. Polymer Reviews, 53(3), 460–505. doi: 10.1080/15583724.2013.808666.
  • [32] Firlik, S., Molenda, J., Borycki, J. (2010). Porównanie metod wyznaczania swobodnej energii powierzchniowej polimerowych powłok orientujących cienkie kryształy. Chemik, 64(4), 1–4.
  • [33] Schrader, M. E. (1995). Young-dupre revisited. Langmuir, 11(9), 3585–3589. doi: 10.1021/la00009a049.
  • [34] Łagan, S., Markiewicz, M. (2017). Ocena wybranych właściwości fizykochemicznych rękawiczek diagnostycznych. Aktualne Problemy Biomechaniki, 29–36.
  • [35] Moore, G., Dunnill, C. W., Wilson, A. P. R. (2013). The effect of glove material upon the transfer of methicillin-resistant Staphylococcus aureus to and from a gloved hand. American Journal of Infection Control, 41(1), 19–23. doi: 10.1016/j.ajic.2012.03.017.
  • [36] Atthi, N., Nimittrakoolchai, O., Jeamsaksiri, W., Supothina, S. (2008). Chemical resistant improvement of natural rubber and nitrile gloves by coating with hydrophobic film. Advanced Materials Research, 55–57, 741–744. doi: 10.4028/www.scientific.net/AMR.55-57.741.
  • [37] Rudawska, A., Jacniacka, E. (2009). Analysis for determining surface free energy uncertainty by the Owen–Wendt method. International Journal of Adhesion and Adhesives, 29(4), 451–457. doi: 10.1016/j.ijadhadh.2008.09.008.
  • [38] Applied Surface Thermodynamics. (2017). Place of Publication Not Identified: CRC Press.
  • [39] Hutchinson, A. R., Iglauer, S. (2006). Adhesion of construction sealants to polymer foam backer rod used in building construction. International Journal of Adhesion and Adhesives, 26(7), 555–66. doi: 10.1016/j.ijadhadh.2005.09.001.
  • [40] Myshkin, N., Kovalev, A. (2018). Adhesion and Surface forces in polymer tribology—A review. Friction, 6(2), 143–55. doi: 10.1007/s40544-018-0203-0.
  • [41] Irzmanska, E., Dynska-Kukulska, K., Jurczyk-Kowalska, M. (2014). Characteristics of microstructural phenomena occurring on the surface of protective gloves by the action of mechanical and chemical factors. Polimery, 59(2), 136–146. doi: 10.14314/polimery.2014.136.
  • [42] Wojciechowski, W. (2011). Wykorzystanie pracy adhezji i składowych swobodnej energii powierzchniowej do tribologicznej analizy stanu warstwy wierzchniej. Tribologia, 6, 269–282.
  • [43] Jeevahan, J., Chandrasekaran, M., Britto Joseph, G., Durairaj, R. B., Mageshwaran, G. (2018). Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 15(2), 231–250. doi: 10.1007/s11998-017-0011-x.
  • [44] Song, K., Lee, J., Choi, S.-O., Kim, J. (2019). Interaction of surface energy components between solid and liquid on wettability, and its application to textile anti-wetting finish. Polymers, 11(3), 498. doi: 10.3390/polym11030498.
  • [45] Wang, J., Wu, Y., Cao, Y., Li, G., Liao, Y. (2020). Influence of surface roughness on contact angle hysteresis and spreading work. Colloid and Polymer Science, 298, 1107–1112. doi: 10.1007/s00396-020-04680-x.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83a97e47-7ce6-4aac-a747-d9a7142031f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.