Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Cooperativity effect in noncovalent interactions of selected molecular complexes stabilised by hydrogen and halogen bonds
Języki publikacji
Abstrakty
Among various so-called weak interactions, a halogen bond [8 and references therein] is currently probably one of more explored by researchers. This is due to the fact that it has several properties in common with the hydrogen bonding, and thus, similarly as already well characterised H-bond, it may have a crucial role in different physical, chemical, and biological processes. This bond is formed due to stabilising interactions between a region of positive charge located on a surface of the halogen atom and the other atomic center possessing the electron charge surplus (e.g. a lone pair) [8]. The region of positive charge appears on the halogen atom surface due to deformation of its electron cloud resulting in its ellipsoidal shape with the short axis opposite the covalent bond and the long axis in the perpendicular direction [11]. This results in a particular distribution of local charges on the atomic surface, as shown in Figure 1. As a consequence the halogen atom may exhibit a dual character, acting as either electron charge donor or acceptor, depending on the type of interaction and the direction of the appearing interactomic contact. A good example of such situation is shown in Figure 2. Thus, one may consider the situation when two interactions are formed simultaneously and the halogen atom acts as an electron charge donor and acceptor at the same time. For such situation the synergism of both interactions may strengthen complexation. In order to analyze that case, various representative complexes were investigated [13, 17, 18, 20, 21] by means of many-body interaction approach [5, 6]. In general, it appears that as distinct to hydrogen bond [2–4], the synergism is rather weak, with some exceptions for iodine atom due to stronger halogen bonds formed by that atomic centre [13, 17, 18]. In the case of halo-amine tetramers [21] the additional stabilising effect derived from back bonding of π type was found – for the first time for a halogen bond.
Wydawca
Czasopismo
Rocznik
Tom
Strony
33--52
Opis fizyczny
Bibliogr. 25 poz., rys., schem., tab.
Twórcy
autor
- Katedra Chemii Fizycznej, Wydział Chemii Uniwersytetu Łódzkiego, ul. Pomorska 163/165, 90-236 Łódź
autor
- Katedra Chemii Fizycznej, Wydział Chemii Uniwersytetu Łódzkiego, ul. Pomorska 163/165, 90-236 Łódź
autor
- Katedra Chemii Fizycznej, Wydział Chemii Uniwersytetu Łódzkiego, ul. Pomorska 163/165, 90-236 Łódź
Bibliografia
- [1] J. Swift, Podroże Guliwera, (tłum. Cecylia Niewiadomska), Wydawnictwo Skrzat, Kraków 2013.
- [2] S.S. Xantheas, J. Chem. Phys., 1994, 100, 7523.
- [3] S.S. Xantheas, Chem. Phys., 2000, 258, 225.
- [4] S.S Xantheas, E. Apra, J. Chem. Phys., 2004, 120, 823 (i prace tam cytowane).
- [5] D. Hankins, J.W. Moskowitz, F.H. Stillinger, J. Chem. Phys., 1970, 53, 4544.
- [6] K. Szalewicz, B. Jeziorski, J. Chem. Phys., 1996, 104, 8821.
- [7] G. Gilli and P. Gilli, The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory, Oxford University Press, New York 2009.
- [8] G.R. Desiraju, P.S. Ho, L. Kloo, A.C. Legon, R. Marquardt, P. Metrangolo, P. Politzer, G. Resnati, K. Rissanen, Pure Appl. Chem., 2013, 85, 1711.
- [9] M. Palusiak, J. Mol. Struct.: THEOCHEM, 2010, 945, 89 (i prace tam cytowane).
- [10] K.E. Riley, J.S. Murray, J .Fanfrlik, J. Rezač, R.J. Sola, M.C. Concha, F.M. Ramos, P. Politzer, J. Mol. Model., 2013, 19, 4651 (i prace tam cytowane).
- [11] B. Bankiewicz, M. Palusiak, Struct. Chem., 2013, 24, 1297.
- [12] A.C. McDowell J. Chem. Phys., 2010, 132, 44312.
- [13] M. Domagała, P. Matczak, M. Palusiak, Comput. Theor. Chem., 2012, 998, 26 (i prace tam cytowane).
- [14] A.C. Legon, Phys. Chem. Chem. Phys., 2010, 12, 7736.
- [15] P.-P. Zhou, W.-Y. Qiu, S. Liub, N.-Z. Jin, Phys. Chem. Chem. Phys., 2011, 13, 7408.
- [16] S.J. Grabowski, J. Phys. Chem., 2012, 116, 1838.
- [17] M. Domagała, A. Lutyńska, M. Palusiak, Int. J. Quantum Chem., 2017, 117, e25348.
- [18] M. Domagała, M. Palusiak, Comput. Theor. Chem., 2014, 1027, 173.
- [19] J.B. Wetherington, J.W. Moncrief, Acta Crystallogr. Sect. B, 1973, 29, 1520.
- [20] J. Dominikowska, M. Palusiak, Chemical Physic Letters, 2013, 583, 8.
- [21] J. Dominikowska, F. M. Bickelhaupt, M. Palusiak, C. Fonseca Guerra, ChemPhysChem, 2016, 17, 474.
- [22] T. Ziegler, A. Rauk, Inorg. Chem., 1979, 18, 1558.
- [23] T. Ziegler, A. Rauk, Inorg. Chem., 1979, 18, 1755.
- [24] M. von Hopffgarten, G. Frenking, WIREs Comput. Mol. Sci., 2012, 2, 43.
- [25] F. M. Bickelhaupt, E. J. Baerends, Reviews in Computational Chemistry, Vol. 15 (red.: K. B. Lipkowitz, D. B. Boyd), Wiley-VCH, Weinheim, 2000.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83a311dc-8c8d-4a99-a1fb-bb50afdcf982