PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fire resistance of FRP strengthening concrete beams at elevated temperature using ABAQUS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical properties of FRP such as strength and stiffness as well as the bonding interface between FRP and concrete will be badly deteriorated when exposed to high temperature. Furthermore, the effect of thickness of insulation with different type of concrete strength has not yet been studied elsewhere in numerical studies. Therefore, this study is to assess the thermal-structural behaviour of insulated FRP strengthened RC beam exposed to elevated temperature using ABAQUS. The proposed numerical model of 200×300 mm RC beam subjected to 2 hours standard fire curve (ISO 834) had been validated with the analytical solution. The validated numerical model then is used in parametric study to investigate the behaviour of fire damaged normal strength concrete (40 MPa) and high strength concrete (60 MPa) of RC beam strengthened with CFRP using various fire insulation thickness of 12.5 mm, 25 mm and 40 mm, respectively. The result of steel characteristic strength reduction factor is compared with analytical using 500°C Isotherm methods. The parametric studies indicated that the fire insulation layer is essential to provide fire protection to the CFRP strengthened RC beams when exposed to elevated temperature. The insulation layer thickness of 25 mm had been found to be the optimum thickness to be used as it is able to meet the criteria of temperature distribution and displacement requirement. In conclusion, the numerical model developed using ABAQUS in this study is to carry out assessment on the thermal-structural behaviour of the insulated CFRP-strengthened RC beams at elevated temperature.
Rocznik
Strony
105--123
Opis fizyczny
Bibliogr. 28 poz., il., tab.
Twórcy
  • Public Work Department, Jalan Sultan Salahuddin, Kuala Lumpur, Malaysia
  • School of Civil Engineering, University Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
  • Institute of Noise and Vibration, University Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
  • School of Civil Engineering, University Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
  • School of Civil Engineering, University Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
  • Engineering Seismology and Earthquake Engineering Research (eSEER), Institute of Noise and Vibration, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Johor, Malaysia
Bibliografia
  • [1] B. Yu, V. Kodur, “Effect of temperature on strength and stiffness properties of near-surface mounted FRP reinforcement”, Composites Part B: Engineering, 2014, vol. 58, pp. 510-517, DOI: 10.1016/j.compositesb.2013.10.055.
  • [2] N.K. Baharuddin, F.M. Nazri, R.P. Jaya, B.H.A. Bakar, “Evaluation of bond strength between fire-damaged normal concrete substance and ultra-high-performance fiber-reinforced concrete as a repair material”, World Journal of Engineering, 2016, vol. 13, no. 5, pp. 461-466, DOI: 10.1108/WJE-06-2016-0014.
  • [3] Z. Triantafyllidis, L.A. Bisby, “Fibre-reinforced intumescent fire protection coatings as a confining material for concrete columns”, Construction and Building Materials, 2020, vol. 231, DOI: 10.1016/j.conbuildmat.2019.117085.
  • [4] R.J.A. Hamad, M.A. Megat Johari, R.H. Haddad, “Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures”, Construction and Building Materials, 2017, vol. 142, pp. 521-535, DOI: 10.1016/j.conbuildmat.2017.03.113.
  • [5] J.P. Firmo, J.R. Correia, L.A. Bisby, “Fire behaviour of FRP-strengthened reinforced concrete structural elements: A state-of-the-art review”, Composites Part B: Engineering, 2015, vol. 80, pp. 198-216, DOI: 10.1016/j.compositesb.2015.05.045.
  • [6] O. El-Mahdy, G. Hamdy, M. Abdullah, “Numerical investigation of the performance of insulated FRP strengthened reinforced concrete beams in fire”, Stavební Obzor - Civil Engineering Journal, 2018, vol. 27, no. 4, pp. 573-586, DOI: 10.14311/cej.2018.04.0046.
  • [7] F.M. Nazri, R.P. Jaya, B.H.A. Bakar, R. Ahmadi, “Fire resistance of ultra-high performance fibre reinforced concrete due to heating and cooling”, MATEC Web of Conferences, 2017, vol. 87, pp. 1-9, DOI: 10.1051/matecconf/20178701021.
  • [8] V.K.R. Kodur, P.P. Bhatt, M.Z. Naser, “High temperature properties of fiber reinforced polymers and fire insulation for fire resistance modeling of strengthened concrete structures”, Composites Part B: Engineering, 2019, vol. 175, art. no. 107104, DOI: 10.1016/j.compositesb.2019.107104.
  • [9] B. Williams, V. Kodur, M.F. Green, L. Bisby, “Fire endurance of fiber-reinforced polymer strengthened concrete T-Beams”, ACI Structural Journal, 2008, vol. 105, no. 1, pp. 60-67, DOI: 10.14359/19069.
  • [10] A. Ahmed, V.K.R. Kodur, “Effect of bond degradation on fire resistance of FRP-strengthened reinforced concrete beams”, Composites Part B: Engineering, 2011, vol. 42, no. 2, pp. 226-237, DOI: 10.1016/j.compositesb.2010.11.004.
  • [11] J.P. Firmo, M.R.T. Arruda, J.R. Correia, “Numerical simulation of the fire behaviour of thermally insulated reinforced concrete beams strengthened with EBR-CFRP strips,” Composite Structures, 2015, vol. 126, pp. 360-370, DOI: 10.1016/j.compstruct.2015.02.084.
  • [12] M.W. Hussin, M.A.R. Bhutta, M. Azreen, P.J. Ramadhansyah, and J. Mirza, “Performance of blended ash geopolymer concrete at elevated temperatures”, Materials and Structures, 2015, vol. 48, pp. 709-720, DOI: 10.1617/s11527-014-0251-5.
  • [13] C.K. Lung, M.R. Mohd Hasan, M.O. Hamzah, A. Sani, S. Poovaneshvaran, and P.J. Ramadhansyah, “Effect of temperatures and loading rates on direct shear strength of asphaltic concrete using layer-parallel direct shear test”, IOP Conference Series: Materials Science and Engineering, 2020, vol. 712, no. 1, art. no. 012047, DOI: 10.1088/1757-899X/712/1/012047.
  • [14] L.A. Bisby, “Fire Behaviour of FRP Reinforced or Confined Concrete”, PhD thesis, Queen University, Kingston, Canada, 2003.
  • [15] B. Sayin, “Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire”, Mechanics of Composite Materials, 2014, vol. 50, pp. 477-490, DOI: 10.1007/s11029-014-9434-y.
  • [16] K.H. Tan, Y. Zhou, “Performance of FRP-Strengthened Beams Subjected to Elevated Temperatures”, Journal of Composites for Construction, 2011, vol. 15, no. 3, pp. 304-311, DOI: 10.1061/(asce)cc.1943-5614.0000154.
  • [17] T.J. Stratford, M. Gillie, J.F. Chen, A.S. Usmani, “Bonded fibre reinforced polymer strengthening in a Real Fire”, Advances in Structural Engineering, 2009, vol. 12, no. 6, pp. 867-878, DOI: 10.1260/136943309790327743.
  • [18] Z. Tao, Q. Yu, “Behaviour of CFRP-strengthened slender square RC columns”, Magazine of Concrete Research, 2008, vol. 60, no. 7, pp. 523-533, DOI: 10.1680/macr.2008.60.7.523.
  • [19] D. Cree, E.U. Chowdhury, M.F. Green, L.A. Bisby, N. Bénichou, “Performance in fire of FRP-strengthened and insulated reinforced concrete columns”, Fire Safety Journal, 2012, vol. 54, pp. 86-95, DOI: 10.1016/j.firesaf.2012.08.006.
  • [20] L.A. Bisby, M.F. Green, V.K.R. Kodur, “Modeling the Behavior of Fiber Reinforced Polymer-Confined Concrete Columns Exposed to Fire”, Journal of Composites for Construction, 2005, vol. 9, no. 1, DOI: 10.1061/(asce)1090-0268(2005)9:1(15).
  • [21] E. Chowdhury, L. Bisby, M. Green, N. Bénichou, V. Kodur, “Heat transfer and structural response modelling of FRP confined rectangular concrete columns in fire”, Construction and Building Materials, 2012, vol. 32, pp. 77-89, DOI: 10.1016/j.conbuildmat.2010.12.064.
  • [22] R.A. Hawileh, M. Naser, W. Zaidan, H.A. Rasheed, “Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire”, Engineering Structures, 2009, vol. 31, no. 12, pp. 3072-3079, DOI: 10.1016/j.engstruct.2009.08.008.
  • [23] J.-G. Dai, W.-Y. Gao, J.G. Teng, “Finite Element Modeling of Insulated FRP-Strengthened RC Beams Exposed to Fire”, Journal of Composites for Construction, 2015, vol. 19, no. 2, DOI: 10.1061/(asce)cc.1943-5614.0000509.
  • [24] K. Hu, G. He, F. Lu, “Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer”, Frontiers of Architecture and Civil Engineering in China, 2007, vol. 1, no. 4, pp. 399-404, DOI: 10.1007/s11709-007-0054-7.
  • [25] A. Ahmed, V. Kodur, “The experimental behavior of FRP-strengthened RC beams subjected to design fire exposure”, Engineering Structures, 2011, vol. 33, no. 7, pp. 2201-2211, DOI: 10.1016/j.engstruct. 2011.03.010.
  • [26] A. Palmieri, S. Matthys, L. Taerwe, “Fire Endurance and Residual Strength of Insulated Concrete Beams Strengthened with Near-Surface Mounted Reinforcement”, Journal of Composites for Construction, 2013, vol. 17, no. 4, DOI: 10.1061/(asce)cc.1943-5614.0000338.
  • [27] H. Blontrock, L. Taerwe, P. Vandevelde. “Fire tests on concrete beams strengthened with fibre composite laminates”, in Proceedings of the International PhD Symposium in Civil Engineering, 5-7 October 2000, Vienna, Austria, K. Bergmeister, Ed. vol. 2, pp. 151-161.
  • [28] V.K.R. Kodur, P.P. Bhatt, “A numerical approach for modeling response of fiber reinforced polymer strengthened concrete slabs exposed to fire”, Composite Structures, 2018, vol. 187, pp. 226-240, DOI: 10.1016/j.compstruct.2017.12.051.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-839fb0f6-5797-4be6-8864-4be6c469cb19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.