Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Background: The Best-worst Method (BWM) has been successfully applied in various fields since it was first proposed in 2015, with numerous extensions developed over time. Its advantages over other pairwise comparison-based multi-criteria decision-making (MCDM) methods-such as requiring fewer pairwise comparisons and providing more consistent evaluations-make it preferable. The primary motivation for this article stems from the fact that no comprehensive review of the method has been published since 2019. The reason for focusing specifically on the “Transportation and Logistics” field is the significant increase in BWM applications within this sector and the large number of BWM studies conducted since the last review article in 2019. Methods: This article provides a bibliometric analysis using VOSviewer visualizations, complemented by a robust interpretation and inference analysis that explores in-depth connections between studies. Specifically, the analysis covers key statistical aspects, including the specific issues to which BWM is applied in the transportation and logistics field, publication trends, methods with which it is integrated, and the concepts (such as fuzzy set, rough set, neutrosophy, stratification etc.) with which it is commonly used. Additionally, the study examines the journals in which these studies are published and the distribution of studies across different countries. Results: The study revealed that several key areas within the transportation and logistics industry, such as occupational health, personnel selection, and the effects of pandemics, remain underexplored. Conclusion: The article highlights emerging research opportunities within the transportation and logistics sector and explores various ideas for the applications of BWM extensions. It also discusses activities, software, books and events related to BWM. The study provides an overview of the current state of BWM applications in transport and logistics and serves as a guide for potential future research.
Wydawca
Czasopismo
Rocznik
Tom
Strony
13--33
Opis fizyczny
Bibliogr. 100 poz., rys., wykr.
Twórcy
autor
- Maritime Faculty, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
- Institute of Social Sciences, Istanbul University, Istanbul, Turkey
autor
- Faculty of Transportation and Logistics, İstanbul University, Istanbul, Turkey
Bibliografia
- 1. Aboutorab, H., Saberi, M., Asadabadi, M. R., Hussain, O., & Chang, E. (2018). ZBWM: The Z-number extension of Best Worst Method and its application for supplier development. Expert Systems with Applications, 107, 115-125. https://doi.org/10.1016/j.eswa.2018.04.015
- 2. Ak, M. F., Yucesan, M., & Gul, M. (2022). Occupational health, safety and environmental risk assessment in textile production industry through a Bayesian BWM-VIKOR approach. Stochastic Environmental Research and Risk Assessment, 36(2), 629-642. https://doi.org/10.1007/s00477-021-02069-y
- 3. Ali, A., & Rashid, T. (2019). Hesitant fuzzy best‐worst multi‐criteria decision‐making method and its applications. International Journal of Intelligent Systems, 34(8), 1953-1967. https://doi.org/10.1002/int.22131
- 4. Ali, S. S., & Kaur, R. (2021). Effectiveness of corporate social responsibility (CSR) in implementation of social sustainability in warehousing of developing countries: A hybrid approach. Journal of Cleaner Production, 324, 129154. https://doi.org/10.1016/j.jclepro.2021.129154
- 5. Ali, S. S., Kaur, R., & Khan, S. (2022). Evaluating sustainability initiatives in warehouse for measuring sustainability performance: An emerging economy perspective. Annals of Operations Research, 324(1), 1-40. https://doi.org/10.1007/s10479-021-04454-w
- 6. Arvidsson, N., Woxenius, J., & Lammgård, C. (2013). Review of road hauliers' measures for increasing transport efficiency and sustainability in urban freight distribution. Transport Reviews, 33(1), 107-127. https://doi.org/10.1080/01441647.2013.763866
- 7. Baki, R. (2021). An integrated, multi-criteria approach based on environmental, economic, social, and competency criteria for supplier selection. RAIRO-Operations Research, 55(3), 1487-1500. https://doi.org/10.1051/ro/2021041
- 8. Başhan, V., Demirel, H., & Celik, E. (2022). Evaluation of critical problems of heavy fuel oil separators on ships by best-worst method. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 14750902221097268. https://doi.org/10.1177/14750902221097268
- 9. Başhan, V., Yucesan, M., Demirel, H., & Gul, M. (2022). Health, safety, and environmental failure evaluation by hybridizing fuzzy multi-attribute decision-making methods for maritime scrubber systems. Environmental Monitoring and Assessment, 194(9), 1-23. https://doi.org/10.1007/s10661-022-10284-5
- 10. Baskak, D., Ozbey, S., Yucesan, M., & Gul, M. (2023). COVID-19 safe campus evaluation for universities by a hybrid interval type-2 fuzzy decision-making model. Environmental Science and Pollution Research, 30(3), 8133-8153. https://doi.org/10.1007/s11356-022-22796-1
- 11. Bernhofen, D. M., El-Sahli, Z., & Kneller, R. (2016). Estimating the effects of the container revolution on world trade. Journal of International Economics, 98, 36-50. https://doi.org/10.1016/j.jinteco.2015.09.001
- 12. Brunelli, M., & Rezaei, J. (2019). A multiplicative best–worst method for multi-criteria decision making. Operations Research Letters, 47(1), 12-15. https://doi.org/10.1016/j.orl.2018.11.008
- 13. Çelikbilek, Y., Moslem, S., & Duleba, S. (2022). A combined grey multi criteria decision making model to evaluate public transportation systems. Evolving Systems, 14(1) 1-15. https://doi.org/10.1007/s12530-021-09414-0
- 14. Daraio, C., Diana, M., Di Costa, F., Leporelli, C., Matteucci, G., & Nastasi, A. (2016). Efficiency and effectiveness in the urban public transport sector: A critical review with directions for future research. European Journal of Operational Research, 248(1), 1-20. https://doi.org/10.1016/j.ejor.2015.05.059
- 15. Dehnavi, M. N., Yazdian, S. A., & Sadjadi, S. J. (2023). Evaluating effective criteria on customer satisfaction using the best-worst method and optimizing resource allocation, case study Iran Aseman Airlines. Journal of Air Transport Management, 109, 102375. https://doi.org/10.1016/j.jairtraman.2023.102375
- 16. Demirel, H., Şener, B., Yildiz, B., & Balin, A. (2020). A real case study on the selection of suitable roll stabilizer type for motor yachts using hybrid fuzzy AHP and VIKOR methodology. Ocean Engineering, 217, 108125. https://doi.org/10.1016/j.oceaneng.2020.108125
- 17. Dong, J., Wan, S., & Chen, S. M. (2021). Fuzzy best-worst method based on triangular fuzzy numbers for multi-criteria decision-making. Information Sciences, 547, 1080-1104. https://doi.org/10.1016/j.ins.2020.09.014
- 18. Ecer, F., & Pamucar, D. (2020). Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. Journal of Cleaner Production, 266, 121981. https://doi.org/10.1016/j.jclepro.2020.121981
- 19. Farooq, D., Moslem, S., Jamal, A., Butt, F. M., Almarhabi, Y., Faisal Tufail, R., & Almoshaogeh, M. (2021). Assessment of Significant Factors Affecting Frequent Lane-Changing Related to Road Safety: An Integrated Approach of the AHP–BWM Model. International Journal of Environmental Research and Public Health, 18(20), 10628. https://doi.org/10.3390/ijerph182010628
- 20. Fartaj, S. R., Kabir, G., Eghujovbo, V., Ali, S. M., & Paul, S. K. (2020). Modeling transportation disruptions in the supply chain of automotive parts manufacturing company. International Journal of Production Economics, 222, 107511. https://doi.org/10.1016/j.ijpe.2019.09.032
- 21. Fathi, M. R., Zamanian, A., & Khosravi, A. (2023). Mathematical modeling for sustainable agri-food supply chain. Environment, Development and Sustainability, 26(3) 1-34. https://doi.org/10.1007/s10668-023-02992-w
- 22. Ganji, S. S., Ahangar, A. N., & Bandari, S. J. (2022). Evaluation of vehicular emissions reduction strategies using a novel hybrid method integrating BWM, Q methodology and ER approach. Environment, Development and Sustainability, 24(10), 11576-11614. https://doi.org/10.1007/s10668-021-01912-0
- 23. Ghadir, A. H., Vandchali, H. R., Fallah, M., & Tirkolaee, E. B. (2022). Evaluating the impacts of COVID-19 outbreak on supply chain risks by modified failure mode and effects analysis: a case study in an automotive company. Annals of Operations Research, 1-31. https://doi.org/10.1007/s10479-022-04651-1
- 24. Gudanowska, A. E. (2017). Modern research trends within technology management in the light of selected publications. Procedia Engineering, 182, 247-254. https://doi.org/10.1016/j.proeng.2017.03.185
- 25. Gul, M., & Yucesan, M. (2022). Performance evaluation of Turkish Universities by an integrated Bayesian BWM-TOPSIS model. Socio-Economic Planning Sciences, 80, 101173. https://doi.org/10.1016/j.seps.2021.101173
- 26. Gul, M., Yucesan, M., & Ak, M. F. (2022). Control measure prioritization in Fine−Kinney-based risk assessment: a Bayesian BWM-Fuzzy VIKOR combined approach in an oil station. Environmental Science and Pollution Research, 29(39), 59385-59402. https://doi.org/10.1007/s11356-022-19454-x
- 27. Guo, S., & Zhao, H. (2017). Fuzzy best-worst multi-criteria decision-making method and its applications. Knowledge-Based Systems, 121, 23-31. https://doi.org/10.1016/j.knosys.2017.01.010
- 28. Gupta, A., & Singh, R. K. (2024). Applications of emerging technologies in logistics sector for achieving circular economy goals during COVID 19 pandemic: analysis of critical success factors. International Journal of Logistics Research and Applications, 1-22. https://doi.org/10.1080/13675567.2021.1985095
- 29. Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35-47. https://doi.org/10.1016/j.jairtraman.2017.06.001
- 30. Hafezalkotob, Arian, & Hafezalkotob, Ashkan. (2017). A novel approach for combination of individual and group decisions based on fuzzy best-worst method. Applied Soft Computing, 59, 316-325. https://doi.org/10.1016/j.asoc.2017.05.036
- 31. Hasan, M. G., Ashraf, Z., & Khan, M. F. (2022). Multi‐choice best‐worst multi‐criteria decision‐making method and its applications. International Journal of Intelligent Systems, 37(2), 1129-1156. https://doi.org/10.1002/int.22663
- 32. Hassan, N. M., & Abbasi, M. N. (2021). A review of supply chain integration extents, contingencies and performance: A post Covid-19 review. Operations Research Perspectives, 8, 100183. https://doi.org/10.1016/j.orp.2021.100183
- 33. Ishizaka, A., Khan, S. A., Kheybari, S., & Zaman, S. I. (2023). Supplier selection in closed loop pharma supply chain: a novel BWM–GAIA framework. Annals of Operations Research, 324(1-2), 13-36. https://doi.org/10.1007/s10479-022-04710-7
- 34. Kamran, M., Bian, J., Li, A., Lei, G., Nan, X., & Jin, Y. (2021). Investigating Eco-Environmental Vulnerability for China–Pakistan Economic Corridor Key Sector Punjab Using Multi-Sources Geo-Information. ISPRS International Journal of Geo-Information, 10(9), 625. https://doi.org/10.3390/ijgi10090625
- 35. Kaviani, M. A., Tavana, M., Kumar, A., Michnik, J., Niknam, R., & de Campos, E. A. R. (2020). An integrated framework for evaluating the barriers to successful implementation of reverse logistics in the automotive industry. Journal of Cleaner Production, 272, 122714. https://doi.org/10.1016/j.jclepro.2020.122714
- 36. Kavus, B. Y., Tas, P. G., Ayyildiz, E., & Taskin, A. (2022). A three-level framework to evaluate airline service quality based on interval valued neutrosophic AHP considering the new dimensions. Journal of Air Transport Management, 99, 102179. https://doi.org/10.1016/j.jairtraman.2021.102179
- 37. Kheybari, S., & Ishizaka, A. (2022). The behavioural best-worst method. Expert Systems with Applications, 209, 118265. https://doi.org/10.1016/j.eswa.2022.118265
- 38. Kheybari, S., Kazemi, M., & Rezaei, J. (2019). Bioethanol facility location selection using best-worst method. Applied Energy, 242, 612-623. https://doi.org/10.1016/j.apenergy.2019.03.054
- 39. Kheybari, S., Monfared, M. D., Salamirad, A., & Rezaei, J. (2023). Bioethanol sustainable supply chain design: A multi-attribute bi-objective structure. Computers & Industrial Engineering, 180, 109258. https://doi.org/10.1016/j.cie.2023.109258
- 40. Krstić, M. D., Tadić, S. R., Brnjac, N., & Zečević, S. (2019). Intermodal terminal handling equipment selection using a fuzzy multi-criteria decision-making model. Promet-Traffic&Transportation, 31(1), 89-100. https://doi.org/10.7307/ptt.v31i1.2949
- 41. Krstić, M., Elia, V., Agnusdei, G. P., De Leo, F., Tadić, S., & Miglietta, P. P. (2024). Evaluation of the agri-food supply chain risks: the circular economy context. British Food Journal, 126(1), 113-133. https://doi.org/10.1108/BFJ-12-2022-1116
- 42. Kumar, A., Mangla, S. K., Kumar, P., & Song, M. (2021). Mitigate risks in perishable food supply chains: Learning from COVID-19. Technological Forecasting and Social Change, 166, 120643. https://doi.org/10.1016/j.techfore.2021.120643
- 43. Lam, J. S. L., Cullinane, K. P. B., & Lee, P. T. W. (2018). The 21st-century Maritime Silk Road: challenges and opportunities for transport management and practice. Transport Reviews, 38(4), 413-415. https://doi.org/10.1080/01441647.2018.1453562
- 44. Liang, F., Brunelli, M., & Rezaei, J. (2020). Consistency issues in the best worst method: Measurements and thresholds. Omega, 96, 102175. https://doi.org/10.1016/j.omega.2019.102175
- 45. Liang, F., Brunelli, M., & Rezaei, J. (2022a). Best-worst Tradeoff method. Information Sciences, 610, 957-976. https://doi.org/10.1016/j.ins.2022.07.097
- 46. Liang, F., Brunelli, M., Septian, K., & Rezaei, J. (2021). Belief-Based Best Worst Method. International Journal of Information Technology & Decision Making, 20(01), 287-320. https://doi.org/10.1142/S0219622020500480
- 47. Liang, Y., Ju, Y., Tu, Y., & Rezaei, J. (2022b). Nonadditive best-worst method: Incorporating criteria interaction using the Choquet integral. Journal of the Operational Research Society, 1-12. https://doi.org/10.1080/01605682.2022.2096504
- 48. Liu, P., Zhu, B., & Yang, M. (2021). Has marine technology innovation promoted the high-quality development of the marine economy? Evidence from coastal regions in China. Ocean & Coastal Management, 209, 105695. https://doi.org/10.1016/j.ocecoaman.2021.105695
- 49. López, C., Ishizaka, A., Gul, M., Yücesan, M., & Valencia, D. (2022). A calibrated Fuzzy Best-Worst-method to reinforce supply chain resilience during the COVID 19 pandemic. Journal of the Operational Research Society, 1-24. https://doi.org/10.1080/01605682.2022.2122739
- 50. Masoumi, S., Hadji Molana, S. M., Javadi, M., & Azizi, A. (2022). Designing integrated model of decision-making-robust optimisation to manage the maintenance of inter-urban routes under uncertainty. International Journal of Pavement Engineering, 23(10), 3522-3535. https://doi.org/10.1080/10298436.2021.1904238
- 51. Mi, X., Tang, M., Liao, H., Shen, W., & Lev, B. (2019). The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next? Omega, 87, 205-225. https://doi.org/10.1016/j.omega.2019.01.009
- 52. Mirghaderi, S. D., & Modiri, M. (2021). Application of meta-heuristic algorithm for multi-objective optimization of sustainable supply chain uncertainty. Sādhanā, 46(1), 1-23. https://doi.org/10.1007/s12046-020-01554-4
- 53. Mohammadi, M., & Rezaei, J. (2020a). Ensemble ranking: Aggregation of rankings produced by different multi-criteria decision-making methods. Omega, 96, 102254. https://doi.org/10.1016/j.omega.2020.102254
- 54. Mohammadi, M., & Rezaei, J. (2020b). Bayesian best-worst method: A probabilistic group decision making model. Omega, 96, 102075. https://doi.org/10.1016/j.omega.2019.06.001
- 55. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group*. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of Internal Medicine, 151(4), 264-269. https://doi.org/10.1016/j.ijsu.2010.02.007
- 56. Moslem, S., Alkharabsheh, A., Ismael, K., & Duleba, S. (2020). An integrated decision support model for evaluating public transport quality. Applied Sciences, 10(12), 4158. https://doi.org/10.3390/app10124158
- 57. Moslem, S., Duleba, S., & Esztergár-Kiss, D. (2022). Comparative mode choice analysis of university staff commuting travel preferences. European Journal of Transport & Infrastructure Research, 22(2), 83-107. https://doi.org/10.18757/ejtir.2022.22.2.5949
- 58. Moslem, S., Farooq, D., Ghorbanzadeh, O., & Blaschke, T. (2020). Application of the AHP-BWM model for evaluating driver behavior factors related to road safety: A case study for Budapest. Symmetry, 12(2), 243. https://doi.org/10.3390/sym12020243
- 59. Nazemzadeh, M., & Vanelslander, T. (2015). The container transport system: Selection criteria and business attractiveness for North-European ports. Maritime Economics & Logistics, 17(2), 221-245. https://doi.org/10.1057/mel.2015.1
- 60. Notteboom, T. E., & Haralambides, H. E. (2020). Port management and governance in a post-COVID-19 era: quo vadis? Maritime Economics & Logistics, 22(3), 329-352. https://doi.org/10.1057/s41278-020-00162-7
- 61. Novotná, M., Švadlenka, L., Jovčić, S., & Simić, V. (2022). Micro-hub location selection for sustainable last-mile delivery. Plos One, 17(7), e0270926. https://doi.org/10.1371/journal.pone.0270926
- 62. Omrani, H., Amini, M., & Alizadeh, A. (2020). An integrated group best-worst method–Data envelopment analysis approach for evaluating road safety: A case of Iran. Measurement, 152, 107330. https://doi.org/10.1016/j.measurement.2019.107330
- 63. Onstein, A. T., Ektesaby, M., Rezaei, J., Tavasszy, L. A., & van Damme, D. A. (2020). Importance of factors driving firms’ decisions on spatial distribution structures. International Journal of Logistics Research and Applications, 23(1), 24-43. https://doi.org/10.1080/13675567.2019.1574729
- 64. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 1-11. https://doi.org/10.1136/bmj.n71
- 65. Pamucar, D., Chatterjee, K., & Zavadskas, E. K. (2019). Assessment of third-party logistics provider using multi-criteria decision-making approach based on interval rough numbers. Computers & Industrial Engineering, 127, 383-407. https://doi.org/10.1016/j.cie.2018.10.023
- 66. Pamučar, D., Ecer, F., Cirovic, G., & Arlasheedi, M. A. (2020). Application of improved best worst method (BWM) in real-world problems. Mathematics, 8(8), 1342. https://doi.org/10.3390/math8081342
- 67. Paul, S. K., Chowdhury, P., Chowdhury, M. T., Chakrabortty, R. K., & Moktadir, M. A. (2021). Operational challenges during a pandemic: an investigation in the electronics industry. The International Journal of Logistics Management, 34(2), 336-362. https://doi.org/10.1108/IJLM-05-2021-0307
- 68. Rabbani, M., Momen, S., Akbarian-Saravi, N., Farrokhi-Asl, H., & Ghelichi, Z. (2020). Optimal design for sustainable bioethanol supply chain considering the bioethanol production strategies: A case study. Computers & Chemical Engineering, 134, 106720. https://doi.org/10.1016/j.compchemeng.2019.106720
- 69. Rajak, S., Mathiyazhagan, K., Agarwal, V., Sivakumar, K., Kumar, V., & Appolloni, A. (2022). Issues and analysis of critical success factors for the sustainable initiatives in the supply chain during COVID-19 pandemic outbreak in India: A case study. Research in Transportation Economics, 93, 101114. https://doi.org/10.1016/j.retrec.2021.101114
- 70. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009
- 71. Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126-130. https://doi.org/10.1016/j.omega.2014.11.009
- 72. Rezaei, J. (2020). A concentration ratio for nonlinear best worst method. International Journal of Information Technology & Decision Making, 19(03), 891-907. https://doi.org/10.1142/S0219622020500170
- 73. Rezaei, J. (2021). Anchoring bias in eliciting attribute weights and values in multi-attribute decision-making. Journal of Decision Systems, 30(1), 72-96. https://doi.org/10.1080/12460125.2020.1840705
- 74. Rezaei, J., Arab, A., & Mehregan, M. (2022). Equalizing bias in eliciting attribute weights in multiattribute decision‐making: experimental research. Journal of Behavioral Decision Making, 35(2), e2262. https://doi.org/10.1002/bdm.2262
- 75. Rezaei, J., Hemmes, A., & Tavasszy, L. (2017). Multi-criteria decision-making for complex bundling configurations in surface transportation of air freight. Journal of Air Transport Management, 61, 95-105. https://doi.org/10.1016/j.jairtraman.2016.02.006
- 76. Rezaei, J., Kothadiya, O., Tavasszy, L., & Kroesen, M. (2018). Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tourism Management, 66, 85-93. https://doi.org/10.1016/j.tourman.2017.11.009
- 77. Rezaei, J., van Roekel, W. S., & Tavasszy, L. (2018). Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transport Policy, 68, 158-169. https://doi.org/10.1016/j.tranpol.2018.05.007
- 78. Rúa, E., Comesaña-Cebral, L., Arias, P., & Martínez-Sánchez, J. (2022). A top-down approach for a multi-scale identification of risk areas in infrastructures: particularization in a case study on road safety. European Transport Research Review, 14(1), 1-18. https://doi.org/10.1186/s12544-022-00563-0
- 79. Safarzadeh, S., Khansefid, S., & Rasti-Barzoki, M. (2018). A group multi-criteria decision-making based on best-worst method. Computers & Industrial Engineering, 126, 111-121. https://doi.org/10.1016/j.cie.2018.09.011
- 80. Sahebi, I. G., Masoomi, B., & Ghorbani, S. (2020). Expert oriented approach for analyzing the blockchain adoption barriers in humanitarian supply chain. Technology in Society, 63, 101427. https://doi.org/10.1016/j.techsoc.2020.101427
- 81. Saner, H. S., Yucesan, M., & Gul, M. (2022). A Bayesian BWM and VIKOR-based model for assessing hospital preparedness in the face of disasters. Natural Hazards, 111(2), 1603-1635. https://doi.org/10.1007/s11069-021-05108-7
- 82. Sarabi, E. P., & Darestani, S. A. (2021). Developing a decision support system for logistics service provider selection employing fuzzy MULTIMOORA & BWM in mining equipment manufacturing. Applied Soft Computing, 98, 106849. https://doi.org/10.1016/j.asoc.2020.106849
- 83. Shojaei, P., Haeri, S. A. S., & Mohammadi, S. (2018). Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique. Journal of Air Transport Management, 68, 4-13. https://doi.org/10.1016/j.jairtraman.2017.05.006
- 84. Siagian, H., Tarigan, Z. J. H., & Jie, F. (2021). Supply chain integration enables resilience, flexibility, and innovation to improve business performance in COVID-19 era. Sustainability, 13(9), 4669. https://doi.org/10.3390/su13094669
- 85. Tadić, S., Krstić, M., Kovač, M., & Brnjac, N. (2022). Evaluation of smart city logistics solutions. Promet-Traffic&Transportation, 34(5), 725-738. https://doi.org/10.7307/ptt.v34i5.4122
- 86. Talib, F., Asjad, M., Attri, R., Siddiquee, A. N., & Khan, Z. A. (2020). A road map for the implementation of integrated JIT-lean practices in Indian manufacturing industries using the best-worst method approach. Journal of Industrial and Production Engineering, 37(6), 275-291. https://doi.org/10.1080/21681015.2020.1788656
- 87. Tarei, P. K., Chand, P., & Gupta, H. (2021). Barriers to the adoption of electric vehicles: Evidence from India. Journal of Cleaner Production, 291, 125847. https://doi.org/10.1016/j.jclepro.2021.125847
- 88. Tavana, M., Shaabani, A., Santos-Arteaga, F. J., & Valaei, N. (2021). An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics. Environmental Science and Pollution Research, 28(38), 53953-53982. https://doi.org/10.1007/s11356-021-14302-w
- 89. Torkayesh, A. E., Malmir, B., & Asadabadi, M. R. (2021). Sustainable waste disposal technology selection: The stratified best-worst multi-criteria decision-making method. Waste Management, 122, 100-112. https://doi.org/10.1016/j.wasman.2020.12.040
- 90. Vafadarnikjoo, A., Tavana, M., Botelho, T., & Chalvatzis, K. (2020). A neutrosophic enhanced best–worst method for considering decision-makers’ confidence in the best and worst criteria. Annals of Operations Research, 289(2), 391-418. https://doi.org/10.1007/s10479-020-03603-x
- 91. Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. https://doi.org/10.1007/s11192-009-0146-3
- 92. Van Oorschot, J. A., Hofman, E., & Halman, J. I. (2018). A bibliometric review of the innovation adoption literature. Technological Forecasting and Social Change, 134, 1-21. https://doi.org/10.1016/j.techfore.2018.04.032
- 93. Yanilmaz, S., Baskak, D., Yucesan, M., & Gul, M. (2021). Extension of FEMA and SMUG models with Bayesian best-worst method for disaster risk reduction. International Journal of Disaster Risk Reduction, 66, 102631. https://doi.org/10.1016/j.ijdrr.2021.102631
- 94. Yazdi, A. K., Wanke, P. F., Hanne, T., & Bottani, E. (2020). A decision-support approach under uncertainty for evaluating reverse logistics capabilities of healthcare providers in Iran. Journal of Enterprise Information Management, 33(5), 991-1022. https://doi.org/10.1108/JEIM-09-2019-0299
- 95. Yousefi-Babadi, A., Bozorgi-Amiri, A., & Tavakkoli-Moghaddam, R. (2021). Sustainable facility relocation in agriculture systems using the GIS and best–worst method. Kybernetes, 51(7), 2343-2382. https://doi.org/10.1108/K-03-2021-0189
- 96. Yucesan, M., Gul, M., & Celik, E. (2021). A holistic FMEA approach by fuzzy-based Bayesian network and best–worst method. Complex & Intelligent Systems, 7(3), 1547-1564. https://doi.org/10.1007/s40747-021-00279-z
- 97. Zarrinpoor, N. (2022). A sustainable medical waste management system design in the face of uncertainty and risk during COVID-19. Fuzzy Optimization and Decision Making, 21(3) 1-36. https://doi.org/10.1007/s10700-022-09401-3
- 98. Zhang, C., Tang, L., & Zhang, J. (2023). Identifying critical indicators in the evaluation of third-party reverse logistics provider using Best–Worst Method. Information, 14(5), 291. https://doi.org/10.3390/info14050291
- 99. Zhou, J., Wu, Y., Wu, C., He, F., Zhang, B., & Liu, F. (2020). A geographical information system based multi-criteria decision-making approach for location analysis and evaluation of urban photovoltaic charging station: A case study in Beijing. Energy Conversion and Management, 205, 112340. https://doi.org/10.1016/j.enconman.2019.112340
- 100. Zhou, Y., Kundu, T., Goh, M., Chakraborty, S., & Bai, X. (2023). A multi-stage multi-criteria data analytics approach to rank commercial service airports. Journal of Air Transport Management, 111(4), 102410. https://doi.org/10.1016/j.jairtraman.2023.102410
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-839f9f8f-9f1b-4a55-9c8a-c735ae93dd02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.