Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Inconel 713C alloy belongs to the group of materials with high application potential in the aerospace industry. This nickel alloy has excellent features such as high strength, good surface stability, high creep and corrosion resistance. The paper presents the results of metallographic examinations of a base material and padding welds made by laser beam on the Inconel 713C alloy. The tests were made on precisely cast test plates imitating low - pressure turbine blades dedicated for the aerospace industry. Observations of the macro- and microstructure of the padding welds, heat-affected zone and base material indicate, that the Inconel 713C alloy should be classified as a hard-to-weld material. In the investigated joint, cracking of the material is disclosed mainly in the heat-affected zone and at the melted zone interface, where pad weld crystals formed on partially melted grains. The results show that phases rich with chromium and molybdenum were formed by high temperature during welding process, which was confirmed by EDS analysis of chemical composition.
Czasopismo
Rocznik
Tom
Strony
19--24
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Material Science, Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Institute of Material Science, Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
Bibliografia
- [1] Cieśla, M., Binczyk, F. & Mańka, M. (2012). Impact of Surface and Volume Modification of Nickel Superalloys IN-713C and MAR-247 on High Temperature Creep Resistance. Archives of Foundry Engineering. 12(4), 17-24. DOI: 10.2478/v10266-012-0101-2.
- [2] Hernas, A. (2000). Creep-resistance of steels and alloys. Gliwice: Silesian University of Technology.
- [3] Mastromatteo, F., Mammoliti, F., Giannozzi, M., Romanelli, M., Ficorilli, D. (2006). Metal temperature map determination of a serviced gas turbine bucket and comparision with FEM temperature distribution. Proceedings of ASME Turbo Expo 2006 Power of Land, Sea and Air; 8-11 May 2006 (pp. 913-918). Spain, Barcelona: The American Society of Mechanical Engineers Journal.
- [4] Zupaniĉ, F., Bonĉina, T., Kiržman, A. & Tichelaar, F.D. (2001). Structure of continuously cast Ni-based superalloy Inconel 713C. Journal of Alloys and Compounds. 329, 290-297. DOI: 10.1016/S09258388(01)016760.
- [5] Zagula-Yavorska, M. & Sieniawski, J. (2018). Cyclic oxidation of palladium modified and nonmodified aluminide coatings deposited on nickel base superalloys. Archives of Civil and Mechanical Engineering. 18(1), 130-139. DOI: 10.1016/j.acme.2017.05.004.
- [6] Agnoli, A., Bernacki, M., Logé, R., Franchet, J., Laigo, J., Bozzolo, N. (2012). Understanding and Modeling of Grain Boundary Pinning in Inconel 718, 12th International Symposium on Superalloys 9-13 September 2012 (pp. 73-82). Pensylwania, United States: John Wiley and Sons.
- [7] DuPont, N., Lippold, C., Kiser, D.S. (2009). Welding metallurgy and weldability of nickel based alloys. New Jersey: John Wiley & Sons.
- [8] Szczotok, A. & Matysiak, H. (2014). Influence of constituents of shell mold on the morphology and chemical composition of carbides occurring in IN 713C superalloy castings. Journal of Materials Engineering and Performance. 23(8), 2748-2759. DOI: 10.1007/s11665-014-1035-3.
- [9] Jia, Q. & Gu, D. (2014). Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties. Journal of Alloys and Compounds. 585(2014), 713-721. DOI: 10.1016/j.jallcom.2013.09.171.
- [10] Yuan, H. & Liu, W. (2005). Effect of the δ phase on the hot deformation behavior of Inconel 718. Materials Science and Engineering. 408(1-2), 281-289. DOI: 10.1016/j.msea. 2005.08.126.
- [11] Ges, A., Palacio, H. & Versaci, R. (1994). IN-713C characteristic properties optimized through different heat treatments. Journal of Material Science. 29(13), 3572-3576. DOI:10.1007/BF00352065.
- [12] Pirowski, Z., Uhl, W., Wodnicki, J., Gwiżdż, A. & Jaśkowiec, K. (2011). Effect of heat treatment on structure of the Inconel 740 type alloy. Prace Instytutu Odlewnictwa. 51(2), 5-22. DOI: 10.7356/iod.2011.7.
- [13] Pyczak, F., Devrient, B., Neuner, F.C. & Mughrabi, H. (2005). The influence of different alloying elements on the development of the γ/γ'microstructure of nickel-base superalloys during high-temperature annealing and deformation. Acta Materialia. 53(14), 3879-3891. DOI: 10.1016/j.actamat.2005.04.041.
- [14] Łyczkowska, K., Adamiec, J., Jachym, R. & Kwieciński, K. (2017). Properties of the Inconel 713 Alloy Within the High Temperature Brittleness Range. Archives of Foundry Engineering. 17(4),103-108. DOI: 10.1515/afe-2017-0138.
- [15] Binczyk, F., Gradoń, P. & Mańka, M. (2012). Mechanical Properties and Creep Resistance of Nickel Alloys After Complex Modification and Double Filtration. Archives of Foundry Engineering. 12(2), 5-8. DOI: 10.2478/v10266-012-0026-9.
- [16] Azadi, M., Marbout, A., Safarloo, S., Azadi, M., Shariat, M., & Rizi, M.H. (2018). Effects of solutioning and ageing treatments on properties of Inconel-713C nickel-based superalloy under creep loading. Materials Science and Engineering A. 711, 195-204. DOI: 10.1016/j.msea.2017.11.038.
- [17] Sufiiarov, V.S., Popovich, A.A., Borisov, E.V. & Polozov, I.A. (2015). Selective laser melting of heat-resistant Ni-based alloy. Non-Ferrous Metals. 1, 32-35. DOI: 10.17580/ nfm.2015.01.08.
- [18] Kang, D.S., Koizumi, Y., Yamanaka, K., Aoyagi, K., Bian, H., & Chiba, A. (2018). Significant impact of yttrium microaddition on high temperature tensile properties of Inconel 713C superalloy. Materials Letters. 227, 40-43. DOI: 10.1016/j.matlet.2018.03.106.
- [19] Bahmanabadi, H., Rezanezhad, S., Azadi, M., & Azadi, M. (2018). Characterization of creep damage and lifetime in Inconel-713C nickel-based superalloy by stress-based, strain/strain rate-based and continuum damage mechanics models. Materials Research Express. 5(2). DOI: 10.1088/2053-1591/aaab04.
- [20] Szczotok, A., Pietraszek, J., & Radek, N. (2017). Metallographic Study and Repeatability Analysis of γ’ Phase Precipitates in Cored, Thin-Walled Castings Made from IN713C Superalloy. Archives of Metallurgy and Materials. 62(2), 595-601. https://doi.org/10.1515/amm-2017-0088.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-839e18a1-5ef8-4299-9ea6-13603b2a8dfc