PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of instrumented wheelset for measuring wheel-rail interaction forces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the design of a specific type of instrumented wheelset intended for continuous measuring of lateral and vertical wheel-rail interaction forces 𝑌 and 𝑄, in accordance with regulations EN 14363 and UIC 518. The platform is a standard heavy wheelset BA314 with an axle-load of 25 tons. The key problems of smart instrumentalization are solved by the use of the wheel’s numerical FEM model, which provides a significant cost reduction in the initial stage of development of the instrumented wheelset. The main goal is to ensure high measuring accuracy. The results of the FEM calculations in ANSYS are basis for identification of the distribution of strains on the internal and external side of the wheel disc. Consequently, the most convenient radial distances for installation of strain gauges of Wheatstone measuring bridges are determined. In the next stage, the disposition, number and ways of interconnection of strain gauges in the measuring bridges are defined. Ultimately, an algorithm for inverse determination of parameters 𝑌 and 𝑄 based on mixed signals from the measuring bridges is developed. The developed solution is validated through tests on specific examples, using a created numerical FEM model. A high accuracy of estimation of unknown parameters 𝑌 and 𝑄 is obtained with an error of less than 4.5%, while the error of estimation of their ratio 𝑌 𝑄 is less than 2%. Therefore, the proposed solution can be efficiently used in the instrumentalization of the considered wheelset, while the problems of its practical implementation will be the subject of further research.
Rocznik
Strony
563--579
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr., wzory
Twórcy
  • University of Kragujevac, Faculty of Mechanical and Civil Engineering in Kraljevo, Dositejeva 19, 36000 Kraljevo, Serbia
  • University of Kragujevac, Faculty of Mechanical and Civil Engineering in Kraljevo, Dositejeva 19, 36000 Kraljevo, Serbia
Bibliografia
  • [1] Iwnicki, S. D. (2006). Handbook of Railway Vehicle Dynamics. Taylor & Francis, Abingdon.
  • [2] Andersson, E., Berg, M., & Stichel, S. (2007). Rail Vehicle Dynamics. Railway Group KTH, Stockholm.
  • [3] European Committee for Standardization. (2018). Railway Applications - Testing and Simulation for the Acceptance of Running Characteristics of Railway Vehicles - Running Behaviour and Stationary Tests (Standard No. EN 14363:2016+A1:2018).
  • [4] UIC Railway Publications (2009) Testing and Approval of Railway Vehicles from the Point of View of their Dynamic Behaviour - Safety - Track Fatigue - Running Behaviour (4th ed.). Railway Technical Publications.
  • [5] Olson, P. E., & Johnsson, S. (1959). Seitenkräfte zwischen Rad und Schiene. Glasers Annalen, 83, 153-161.
  • [6] Zeilhofer, M., Sühsmuth, G., & Piwenitzky, G. (1972). Ĺrmittlung der Kräfte zwischen Rad und Schiene aus den Biegedehnungen der Radsatzwelle. Glasers Annalen, 96(12), 373-385.
  • [7] Berg, H., Gößling, G., & Zück, H. (1996). Radsatzwelle und Radscheibe - die richtige Kombination zur Messung der Kräfte zwischen Rad und Schiene. Glasers Annalen, 120(2), 40-47.
  • [8] Allen, R. A. (1980). A Superior Instrumented Wheelset. Wheel/Rail Dynamics Society.
  • [9] Bracciali, A., Cavaliere, F., & Macherelli, M. (2014, April). Review of instrumented wheelset technology and applications. Proceedings of the Second International Conference on Railway Technology: Research, Development and Maintenance (pp. 1-16). https://doi.org/10.4203/ccp.104.167
  • [10] Bižić, M., & Petrović, D. (2017). Basics of experimental determination of wheel-rail contact forces by using instrumented wheelsets. IMK-14 - Research & Development, 23, 63-68.
  • [11] Diana, G., Resta, F., Braghin, F., Bocciolone, M., Di Gialleonardo, E., & Crosio, P. (2012). Metodologia di calibrazione di sale dinamometriche per la misura delle forze di contatto tra ruota e rotaia. Ingegneria Ferroviaria, 1, 9-21.
  • [12] Gialleonardo, E. D., Diana, G., Resta, F., Braghin, F., Bocciolone, M., & Crosio, P. (2011). Design of a new full scale test-rig for the calibration of instrumented wheelsets. In Proceedings of the 9th World Congress on Railway Research - WCRR 2011.
  • [13] Bracciali, A., Macherelli, M., & Bocciolini, L. (2016). Design of an Innovative Test Bench to Calibrate Instrumented Wheelsets. In Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance. 243. https://doi.org/10.4203/ccp.110.243
  • [14] Gialleonardo, E. D., Bionda, S., Braghin, F., & Somaschini, C. (2018). Design of experiment approaches for the calibration of instrumented wheelset. In Proceedings of 16th Mini Conference on Vehicle System Dynamics, Identification and Anomalies - VSDIA 2018.
  • [15] Lin, H., Li, Q., Yuan, Y., Yu, R., & Yang, G. (2016). Calibration Test and Correction of Instrumented Wheelset, Proceedings of Conference Advanced Science and Technology - ASTL 2016. 121, 476-479. https://doi.org/10.14257/astl.2016.121.86
  • [16] Jin, X. (2020). Evaluation and analysis approach of wheel-rail contact force measurements through a high-speed instrumented wheelset and related considerations. Vehicle System Dynamics, 58(9), 1-23. https://doi.org/10.1080/00423114.2019.1612073
  • [17] Bagheri, V. R., Tehrani, P. H., & Younesian, D. (2017). Optimal strain gauge placement in instrumented wheelset for measuring wheel-rail contact forces. International Journal of Precision Engineering and Manufacturing, 18, 1519-1527. https://doi.org/10.1007/s12541-017-0180-7
  • [18] Papini, S., Pugi, L., Rindi, A., Meli, E., Papini, S., & Florence, U. O. (2013). An Integrated Approach for the Optimization of Wheel-Rail Contact Force Measurement Systems. Journal of Modern Transportation, 21, 95-102. https://doi.org/10.1007/s40534-013-0013-z
  • [19] Gomez, E., Giménez, J. G., & Alonso, A. (2011). Method for the reduction of measurement errors associated to the wheel rotation in railway dynamometric wheelsets. Mechanical Systems and Signal Processing, 25(8), 3062-3077. https://doi.org/10.1016/j.ymssp.2011.05.006
  • [20] Cazzulani, G., Di Gialleonardo, E., Bionda, S., Bassetti, M., Crosio, P., & Braghin, F. (2017). A new approach for the evaluation and the improvement of the metrological characteristics of an instrumented wheelset for the measure of wheel-rail contact forces. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(4), 381-393. https://doi.org/10.1177/0954409716631785
  • [21] Ren, Y., & Chen, J. (2019). A new method for wheel-rail contact force continuous measurement using instrumented wheelset. Vehicle System Dynamics, 57(2), 269-285. https://doi.org/10.1080/00423114.2018.1460853
  • [22] Kanehara, H., & Fujioka, T. (2002). Measuring rail/wheel contact points of running railway vehicles. Wear, 253(1-2), 275-283. https://doi.org/10.1016/S0043-1648(02)00114-X
  • [23] Hondo, T., Kuniyuki, S., & Doi, H. (2021). Signal processing procedure for extracting information of contact position from instrumented wheelset using with bending and shear strains for lateral force measurement. Proceedings of the Transportation and Logistics Conference, 2021.30:TL2-1. https://doi.org/10.1299/jsmetld.2021.30.TL2-1
  • [24] Noguchi, Y. (2021). Method for Measuring Wheel/Rail Contact Positions Using Strain Gauges. IEEJ Transactions on Industry Applications, 141(3), 241-248. https://doi.org/10.1541/ieejias.141.241
  • [25] Hondo, T., Kuniyuki, S., Tanaka, T., Suzuki, M., & Doi, H. (2021). Measurement of wheel-rail lateral force using shear strain of wheel web in railway vehicle (Comparison with a conventional bending based method under wheel rotating condition). Transactions of the JSME, 87(903), 21-00253. https://doi.org/10.1299/transjsme.21-00253
  • [26] Hondo, T., Kuniyuki, S., Tanaka, T., & Suzuki, M. (2022). Method for Measuring Lateral Force Utilizing Shear Strains inside Wheel Load Measuring Holes of Instrumented Wheelset. Quarterly Report of Railway Technical Research Institute, 63(2), 139-144. https://doi.org/10.2219/rtriqr.63.2_139
  • [27] Hondo, T., Tanaka, T., Kuniyuki, S., & Suzuki, M. (2021, August). Cross-sensitivity characteristics of instrumented wheelset associated with longitudinal force and lateral contact position. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 85468, p. V009T09A023). American Society of Mechanical Engineers. https://doi.org/10.1115/DETC2021-67522
  • [28] Wei, L., Zeng, J., Wu, P., & Gao, H. (2014). Indirect method for wheel-rail force measurement and derailment evaluation. Vehicle System Dynamics, 52(12), 1622-1641. https://doi.org/10.1080/00423114.2014.953180
  • [29] Urda, P., Muñoz, S., Aceituno, J. F., & Escalona, J. L. (2020). Wheel-rail contact force measurement using strain gauges and distance lasers on a scaled railway vehicle. Mechanical Systems and Signal Processing, 138, 106555. https://doi.org/10.1016/j.ymssp.2019.106555
  • [30] Wang, J., Li, D., Qu, S., & Zhang, D. (2021). A Nondestructive Instrumented Wheelset System for Contact Forces Measurements. Engineering, 13(7), 361-371. https://doi.org/10.4236/eng.2021.137026
  • [31] Nong, H., & Lin, J. (2009, August). Design of loosely coupled inductive power transfer systems for instrumented wheelset. In 2009 9th International Conference on Electronic Measurement & Instruments (pp. 1-670-1-674). IEEE. https://doi.org/10.1109/icemi.2009.5274779
  • [32] Ronasi, H., Johansson, H., & Larsson, F. (2014). Identification of wheel-rail contact forces based on strain measurements, an inverse scheme and a finite-element model of the wheel. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(4), 343-354. https://doi.org/10.1177/0954409712473961
  • [33] Ren, Y., & Chen, J. (2009). Instrumented Wheelset Wheel/Rail Force Measurement by Blind Signal Separation. Proceedings of the Second International Conference on Transportation Engineering - ICTE 2009. 2502-2507. https://doi.org/10.1061/41039(345)413
  • [34] Ren, Y., Chen, J., & Lin, J. (2010) A Blind Signal Separation Based Measurement of the Wheel/Rail Force of an Instrumented Wheelset. Mechanical Science and Technology for Aerospace Engineering, 3, 289-292.
  • [35] Bižić, M. (2015). Research of influential parameters in wheel-rail interaction on running stability of railway vehicles [Doctoral dissertation, University of Kragujevac]. (in Serbian)
  • [36] Bižić, M. B., Petrović, D. Z., Tomić, M. C., & Djinović, Z. V. (2017). Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset. Measurement Science and Technology, 28(7), 075902. https://doi.org/10.1088/1361-6501/aa666f
  • [37] European Committee for Standardization. (2020). Railway applications - Wheelsets and bogies - Wheels - Product requirements (Standard No. EN 13262:2020).
Uwagi
1. The authors wish to express their gratitude to the Serbian Ministry of Education, Science and Technological Development for supporting this research (contract no. 451-03-68/2022-14/200108).
2. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-839d46bf-ba80-4260-88ef-e8e48e7b3dc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.