Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of flying robots for various environmental protection issues is a very important and current research topic. Designing a dedicated multi-rotor flying robot is necessary for the efficient and automated localization of sources of air pollution, especially solid particles. In particular, one of the most important requirements that must be met by such a robot is its appropriate impact on the measurement process, i.e., increasing the sensitivity of sensors or reducing the interference. This is particularly difficult because its rotating rotors introduce significant disturbances to the surrounding fluid. In these studies, the design process is supported by the creation of a mathematical flow model and a series of analyzes to optimize the PM measurement system. The model is built using the finite-volume method in ANSYS Fluent software and steady-state RANS averaging. First, a flow field model with one propeller was modeled and its parameters identified by comparison with the results from the dedicated original dynamometer stand -- characteristics of the propeller performance. On the basis of the simulations and measurement of one rotor, subsequent systems of the highest practical importance are built. The effect of that design process was the preparation and testing of a functional robot prototype. The field parameter distributions resulting from the analyzes, in particular the turbulence intensity, allow one to propose a criterion on the basis of which both the best rotor configuration and localization of sensors are selected.
Czasopismo
Rocznik
Tom
Strony
86--104
Opis fizyczny
Bibliogr. 31 poz., fig., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow, Poland
autor
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, Krakow, Poland
Bibliografia
- [1] Alvarado, M., Gonzalez, F., Erskine, P., Cliff, D., & Heuff, D. (2017). A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle. Sensors, 17(2), 343. https://doi.org/10.3390/s17020343
- [2] Ansys Fluent Theory Guide. Release 2020 R1, ANSYS Inc.
- [3] Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge Univ. Press.
- [4] Burgués, J., Hernández, V., Lilienthal, A., & Marco, S. (2019). Smelling Nano Aerial Vehicle for Gas Source Localization and Mapping. Sensors, 19(3), 478. https://doi.org/10.3390/s19030478
- [5] Chang, J. H., Chen, Y. Y., & Huang, Y. M. (2018). Design and implementation of an ambient data collection mechanism based on a quadcopter. Proceedings – 2018 1st International Cognitive Cities Conference, IC3 2018 (pp. 32–36). IEEE. https://doi.org/10.1109/IC3.2018.00017
- [6] Chen, J., Scircle, A., Black, O., Cizdziel, J., Watson, N., Wevill, D., & Zhou, Y. (2018). On the use of multicopters for sampling and analysis of volatile organic compounds in the air by adsorption/thermal desorption GC-MS. Air Qual Atmos Health, 11, 835–842. https://doi.org/10.1007/s11869-018-0588-y
- [7] Cheng, W. H., Hsieh, T. S., Chu, C. M., Chiang, C. C., & Yuan, C. S. (2019). Application of a Telescoping Microextraction Needle Trap Sampling Device on a Drone to Extract Airborne Organic Vapors. Aerosol Air Qual. Res., 19, 1593–1601. https://doi.org/10.4209/aaqr.2019.04.0183
- [8] Chiang, Y. L., Wang, J. C., Sun, C. H., Wen, T. H., Juang, J. Y., & Jiang, J. A. (2020). Mobile Measurement of Particulate Matter Concentrations on Urban Streets: System Development and Field Verification. IEEE Access, 8, 197617–197629. http://doi.org/10.1109/ACCESS.2020.3034489
- [9] Chunithipaisan, S., Panyametheekul, S., Pumrin, S., Tanaksaranond, G., & Ngamsritrakul, T. (2018). Particulate Matter Monitoring Using Inexpensive Sensors and Internet GIS: A Case Study in Nan, Thailand. Engineering Journal, 22, 25–37. http://doi.org/10.4186/ej.2018.22.2.25
- [10] Ciesielka, W., & Suchanek, G. (2019). Modelling and simulation tests of a quadrocopter flying robot. New Trends in Production Engineering, 2(1), 486–495. http://doi.org/10.2478/ntpe-2019-0052
- [11] Dieu Hien, V. T., Lin, C., Thanh, V. C., Kim Oanh, N. T., Thanh, B. X., Weng, C. E., Yuan, C. S., & Rene, E. R. (2019). An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs). Journal of Environmental Management, 247, 401–412. http://doi.org/10.1016/j.jenvman.2019.06.090
- [12] Faraz, A., Pushpendra, K., Yasar, K., & Pravin, P. P. (2020). Flow and Structural Analysis of a Quadcopter UAV. International Journal of Advanced Research in Engineering and Technology (IJARET), 11(8), 880–888. http://doi.org/10.34218/IJARET.11.8.2020.086
- [13] Glauert, H. (1935). Airplane Propellers. In: Aerodynamic Theory. Springer Heidelberg. https://doi.org/10.1007/978-3-642-91487-4_3
- [14] Gu, Q. R., Michanowicz, D., & Jia, C. (2018). Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling. Sensors, 18(12), 4363. https://doi.org/10.3390/s18124363
- [15] Hutchinson, M., Liu, C., Chen, W. H. (2019). Source term estimation of a hazardous airborne release using an unmanned aerial vehicle. J Field Robotics, 36, 797–817. https://doi.org/10.1002/rob.21844
- [16] Landolsi, T., Sagahyroon, A., Mirza, M., Aref, O., Maki, F., & Maki, S. (2018). Pollution monitoring system using position-aware drones with 802.11 Ad-Hoc networks. 2018 IEEE Conference on Wireless Sensors, ICWiSe 2018 (pp. 40–43). IEEE. https://doi.org/10.1109/ICWISE.2018.8633285
- [17] Luo, B., Meng, Q., Wang, J., & Ma, S. (2016). A numerical model to simulate the aerodynamic olfactory effect of the gas-sensitive UAV. 2016 12th World Congress on Intelligent Control and Automation (WCICA) (pp. 3295–3300). IEEE. http://doi.org/10.1109/WCICA.2016.7578639
- [18] Mayuga, G. P., Favila, C., Oppus, C., Macatulad, E., & Lim, L. H. (2018). Airborne Particulate Matter Monitoring Using UAVs for Smart Cities and Urban Areas. TENCON 2018 - 2018 IEEE Region 10 Conference (pp. 1398–1402). IEEE. http://doi.org/10.1109/TENCON.2018.8650293
- [19] Menter, F. R. (1994). Two-Equation, Eddy-Viscosity, Turbulence Models for Engineering Applications. AIAA Journal, 32, 1598–1605. https://doi.org/10.2514/3.12149
- [20] Nagy, A., & Jahn, I. (2019). Advanced Data Acquisition System for Wind Energy Applications. Periodica Polytechnica Transportation Engineering, 47(2), 124–130. https://doi.org/10.3311/PPtr.11515
- [21] Ni, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., & Tai, X. (2017). Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System. Sensors, 17(3), 502. http://dx.doi.org/10.3390/s17030502
- [22] Parra, P. H. G., Angulo, M. V. D., & Gaona, G. E. E. (2018). CFD Analysis of two and four blades for multirotor Unmanned Aerial Vehicle. 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (pp. 1–6). IEEE. http://doi.org/10.1109/CCRA.2018.8588130
- [23] Rodriguez, S. (2019). Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Springer Cham. https://doi.org/10.1007/978-3-030-28691-0
- [24] Romik, D., & Czajka, I. (2022). Numerical Investigation of the Sensitivity of the Acoustic Power Level to Changes in Selected Design Parameters of an Axial Fan. Energies, 15(4), 1357. https://doi.org/10.3390/en15041357
- [25] Smith, B., John, G., Stark, B., Christensen, L. E., & Chen, Y. (2016). Applicability of unmanned aerial systems for leak detection. 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1220–1227). IEEE. http://doi.org/10.1109/ICUAS.2016.7502635
- [26] Suchanek, G., Wołoszyn, J., & Gołaś, A. (2022). Evaluation of Selected Algorithms for Air Pollution Source Localisation Using Drones. Sustainability, 14(5), 3049. https://doi.org/10.3390/su14053049
- [27] Tulwin, T. (2019). Low Reynolds Number Rotor Blade Aerodynamic Analysis. MATEC Web of Conferences, 252, 04006. https://doi.org/10.1051/matecconf/201925204006
- [28] Villa, T., Salimi, F., Morton, K., Morawska, L., & Gonzalez, F. (2016). Development and Validation of a UAV Based System for Air Pollution Measurements. Sensors, 16(12), 2202. https://doi.org/10.3390/s16122202
- [29] Wang, D., Wang, Z., Peng, Z. R., & Wang, D. (2020). Using unmanned aerial vehicle to investigate the vertical distribution of fine particulate matter. International Journal of Environmental Science and Technology, 17, 219–230. https://doi.org/10.1007/s13762-019-02449-6
- [30] Wang, Q. (2019). Real-time Atmospheric Monitoring of Urban Air Pollution Using Unmanned Aerial Vehicles. WIT Transactions on Ecology and the Environment, 236, 79–88. http://doi.org/10.2495/AIR190081
- [31] Wilcox, D. C. (2006). Turbulence Modeling for CFD (Third Edition). D C W Industries.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-839d0f67-6147-40d2-a355-c5b91c46dc52