Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
International Workshop “Towards safe and optimized separation processes, a challenge for nuclear scientists” (FP7 European Collaborative Project SACSESS) (22-24.04.2015 ; Warsaw, Poland)
Języki publikacji
Abstrakty
Complex formation between uranyl ion, UO2 2+, and a hydrophilic anionic form of SO3-Ph-BTP4– ligand, L4–, in water was studied by liquid-liquid extraction experiments performed over a range of the ligand and HNO3 concentrations in the aqueous phase, at a constant concentration of nitrate anions at 25°C . The competition for UO2 2+ ions between the lipophilic TODGA extractant and the hydrophilic L4– ligand leads to the decrease in the uranyl distribution ratios, D, with an increasing L4– concentration. The model of the solvent extraction process used accounts – apart from uranyl complexation by TODGA and SO3-Ph-BTP4– – also for uranyl complexation by nitrates and for the decrease in the concentration of the free L4– ligand in the aqueous phase, due to its protonation, bonding in the uranyl complex and the distribution between the two liquid phases. The unusually strong dependence of the D values on the acidity, found in the experiment, could hardly be explained as due to L4– protonation merely. Three hypotheses were experimentally tested, striving to interpret the data in terms of additional extraction to the organic phase of ion associates of protonated TODGA cation with either partly protonated anionic L4– ligands or anionic UO2 2+ complexes with NO3 – or L4–. None of them has been confi rmed. The analysis of the results, based on the formal correction of free ligand concentrations, points to the formation of 1 : 1 and 1 : 2 uranyl – SO3-Ph-BTP complexes in the aqueous phase. The conditional formation constant of the 1:1 complex has been determined, logβL,1 = 2.95 ± 0.15.
Czasopismo
Rocznik
Strony
821--827
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Centre for Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, and RadioChemistry & Processes Department, Nuclear Energy Division, CEA, F-30207 Bagnols sur Cèze, France
autor
- Centre for Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland
autor
- RadioChemistry & Processes Department, Nuclear Energy Division, CEA, F-30207 Bagnols sur Cèze, France
autor
- RadioChemistry & Processes Department, Nuclear Energy Division, CEA, F-30207 Bagnols sur Cèze, France
Bibliografia
- 1. Baisden, P. A., & Atkins-Duffi n, C. E. (2011). Radioactive waste management. In A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, & F. Rösch (Eds.), Handbook of nuclear chemistry. 2nd ed. (pp. 2797–2835). Springer.
- 2. Salvatores, M., & Palmiotti, G. (2011). Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Progr. Part. Nucl. Phys., 66, 144–166.
- 3. Miguirditchian, M., Chareyre, L., Sorel, C., Bisel, I., Baron, P., & Masson, M. (2008). Development of the GANEX process for the reprocessing of Gen IV spent nuclear fuels. In ATALANTE 2008, May 19–22 (pp. 1–4). Montpellier, France.
- 4. Aneheim, E., Ekberg, Ch., Fermvik, A., Foreman, M. R. St. J., Retegan, T., & Skarnemark, G. (2010). A TBP/BTBP-based GANEX separation process. Part 1: Feasibility. Solvent Extr. Ion Exch., 28, 437–458.
- 5. Carrott, M., Bell, K., Brown, J., Geist, A., Gregson, C., Hérès, X., Maher, Ch., Malmbeck, R., Mason, Ch.,Modolo, G., Müllich, U., Sarsfi eld, M., Wilden, A., & Taylor, R. (2014). Development of a new flowsheet for co-separating the transuranic actinides: The “EURO-GANEX” process. Solvent Extr. Ion Exch., 32, 447–467.
- 6. Carrott, M., Geist, A., Hérès, X., Lange, S., Malmbeck, R., Miguirditchian, M., Modolo, G., Wilden, A., & Taylor, R. (2015). Distribution of plutonium, americium and interfering fi ssion products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene, and implications for the design of the “EURO-GANEX” process. Hydrometallurgy, 152, 139–148.
- 7. Geist, A., Müllich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., & Zevaco, T. (2012). Actinide( III)/lanthanide(III) separation via selective aqueous complexation of actinide(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)pyridine in nitric acid. Solvent Extr. Ion Exch., 30, 433–444.
- 8. Modolo, G., Wilden, A., Geist, A., Magnusson, D., & Malmbeck, R. (2012). A review of the demonstration of innovative solvent extraction processes for the recovery of minor actinides from PUREX raffi nate. Radiochim. Acta, 100, 715–725.
- 9. Ansari, S. A., Pathak, P., Mohapatra, P. K., & Manhanda, V. K. (2012). Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev., 112, 1751–1772.
- 10. Kannan, S., Moody, M. A., Barnes, C. L., & Duval, P. B. (2008). Lanthanum(III) and uranyl(VI) diglycolamide complexes: synthetic precursors and structural studies involving nitrate complexation. Inorg. Chem., 47, 4691–4695.
- 11. Sasaki, Y., & Choppin, G. R. (1996). Solvent extraction of Eu, Th, U, Np and Am with N,N'-dimethyl-N,N'-dihexyl-3-oxapentanediamide and its analogous compounds. Anal. Sci., 12, 225–230.
- 12. Sasaki, Y., Sugo, Y., Suzuki, S., & Tachimori, S. (2001). The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-ndodecane system. Solvent Extr. Ion Exch., 19, 91–103.
- 13. Zhu, Z. -X., Sasaki, Y., Suzuki, H., Suzuki, S., & Kimura, T. (2004). Cumulative study on solvent extraction of elements by N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal. Chim. Acta, 527, 163–168.
- 14. Arisaka, M., & Kimura, T. (2011). Thermodynamic and spectroscopic studies on Am(III) and Eu(III) in the extraction system of N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide in n-dodecane/nitric acid. Solvent Extr. Ion Exch., 29, 72–85.
- 15. Budesinsky, B. W. (1977). Selective spectrophotometric determination of uranium. Microchem. J., 22, 50–54.
- 16. Cagle, F. W., & Smith, G. F. (1947). 2,2-Bipyridine ferrous complex ion as indicator in determination of iron. Anal. Chem., 19, 384–385. DOI: 10.1021/ac60006a008.
- 17. Rode, J. E., Narbutt, J., Dudek, M. K., Kaźmierski, S., & Dobrowolski, J. Cz. (2016). On the conformation of the actinide-selective hydrophilic SO3-Ph-BTP ligand in aqueous solution. A computational study. J. Mol. Liquids (accepted).
- 18. Stary, J. (1967). The use of solvent extraction of metal chelates for the investigation of complexation in aqueous solutions. In D. Dyrssen, J. -O. Liljenzin, & J. Rydberg (Eds.), Solvent extraction chemistry –Proceedings of the International Conference held at Gothenburg, Sweden, 27 August – 1 September 1966 (pp. 1–10). Amsterdam: North-Holland Publ. Co.
- 19. Ruff, Ch. (2013). Spektroskopische und thermodynamische Untersuchung der Komplexierung von Cm(III) und Eu(III) mit hydrophilen Bis-Triazinylpyridinen (pp. 49–52). Doctoral dissertation, Ruprecht-Karls-Universität Heidelberg. Available from www.ub.uni-heidelberg.de/archiv/16784.
- 20. Farrance, I., & Frenkel, R. (2012). Uncertainty of measurement: A review of the rules for calculating uncertainty components through functional relationships. Clin. Biochem. Rev., 33, 49–75.
- 21. Steczek, L., Rejnis, M., Narbutt, J., Charbonnel, M. -Ch., & Moisy, Ph. (2016). On the stoichiometry and stability of americium(III) complexes with a hydrophilic SO3-Ph-BTP ligand, studied by liquid-liquid extraction. J. Radioanal. Nucl. Chem. (accepted).
- 22. Kaplan, L., Hildebrandt, R. A., & Ader, M. (1956). The trinitratouranyl ion in organic solvents. J. Inorg. Nucl. Chem., 2, 153–163.
- 23. Condamines, N., & Musikas, C. (1992). The extraction by N,N-dialkylamides. II. Extraction of actinide cations. Solvent Extr. Ion Exch., 10, 69–100.
- 24. Charbonnel, M. C., & Musikas, C. (1989). The extraction by N,N'-tetrabutylglutaramides. II. Extraction of U(VI), Pu(IV) and some fission products. Solvent Extr. Ion Exch., 7, 1007–1025.
- 25. Suleimenov, O. M., Seward, T. M., & Hovey, J. K. (2007). A spectrophotometric study on uranyl nitrate complexation to 150°C . J. Solution Chem., 36, 1093–1102.
- 26. Ruff, C. M., Müllich, U., Geist, A., & Panak, P. J. (2012). Complexation of Cm(III) and Eu(III) with hydropilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine studied by time-resolved laser fluorescence spectroscopy. Dalton Trans., 41, 14594–14602.
- 27. Berthet, J. -C., Thuéry, P., Dognon, J. -P., Guillaneux, D., & Ephritikhine, M. (2008). Sterically congested uranyl complexes with seven-coordination of the UO2 unit: the peculiar ligation mode of nitrate in [UO2(NO3)2(Rbtp)] complexes. Inorg. Chem., 47, 6850–6862.
- 28. Prestianni, A., Joubert, L., Chagnes, A., Cote, G., & Carlo, A. (2011). A density functional study of uranium(VI) nitrate monoamide complexes. Phys. Chem. Chem. Phys., 13, 19371–19377.
- 29. Hubscher-Bruder, V., Haddaoui, J., Bouhroum, S., & Arnaud-Neu, F. (2010). Recognition of some lanthanides, actinides, and transition- and heavy-metal cations by N-donor ligands: Thermodynamic and kinetic aspects. Inorg. Chem., 49, 1363–1371.
- 30. Marie, C., Miguirditchian, M., Guillaumont, D., Tosseng, A., Berthon, C., Guilbaud, P., Duvail, M.,Bisson, J., Guillaneux, D., Pipelier, M., & Dubreuil, D. (2011). Complexation of lanthanides(III), americium(III), and uranium(VI) with bitopic N,O ligands: an experimental and theoretical study. Inorg. Chem., 50, 6557–6566.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83901472-960d-4743-ae3b-30561a238759