PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Emergy analysis of energy transition from coal to renewable at chicken farm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an emergy analysis of the poultry farm regarding shifting energy sources from fossil fuels to biomass generated onsite in broilers and hen eggs rearing systems. It has been found that the manure produced on the farm has sufficient energy potential to replace the currently used energy carriers, both for heating and electricity supply. Replacing the currently used conventional energy resources with chicken manure will increase the emission charges. However, implementation of low-emission combustion techniques can help with reducing the emissions. Emergy analysis showed that for the conventional energy mix used in the farm, the Renewability Index (REN) is 0.5797, the Environmental Loading Ratio (ELR) is 171.49 and the Emergy Yield Ratio (EYR) has a value of about 1. If energy carriers are replaced by chicken manure, the REN may increase by 6.19% and the ELR may decrease by 6.11%. These relatively small changes should be considered in the context of the large scale of chicken production in Poland.
Rocznik
Strony
15--30
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Opole University of Technology, Department of Thermal Engineering and Industrial Facilities, St. Mikolajczyka 5, Opole, 45-271, Poland
  • Opole University of Technology, Department of Thermal Engineering and Industrial Facilities, St. Mikolajczyka 5, Opole, 45-271, Poland
autor
  • Opole University of Technology, Department of Thermal Engineering and Industrial Facilities, St. Mikolajczyka 5, Opole, 45-271, Poland
  • Opole University of Technology, Department of Process and Environmental Engineering, St. Mikolajczyka 5, Opole, 45-271, Poland
Bibliografia
  • [1] V. Rodić, L. Perić, M. Dukić-Stojčić, N. Vukelić, The environmental impact of poultry production, Physica Biotechnology in Animal Husbandry 27 (4) (2011) 1673–1679.
  • [2] Food and Agriculture Organization of the United Nations (FAOSTAT), New Food Balances, http://www.fao.org/faostat/en/data/FBS (2020).
  • [3] A. Augustyńska-Prejsnar, M. Ormian, Z. Sokołowicz, J. Topczewska, J. Lechowska, Oddziaływanie ferm trzody chlewnej i drobiu na środowisko, Proceedings of ECOpole 12 (1) (2018) 117–129.
  • [4] European Commission, Best Available Techniques (BAT) Reference Document for the Intensive Rearing of Poultry or Pigs. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control) (2017).
  • [5] S. Myszograj, E. Puchalska, Odpady z chowu i uboju drobiu – zagrożenie dla środowiska czy surowiec do produkcji energii, Environmental Medicine 15 (3) (2012).
  • [6] Z. Recebli, S. Selimli, M. Ozkaymak, O. Gonc, Biogas production from animal manure. journal of engineering science and technology, School of Engineering, Taylor’s University 10 (6) (2015) 722–729.
  • [7] M. Tańczuk, R. Junga, A. Kolasa-Więcek, P. Niemiec, Assessment of the energy potential of chicken manure in Poland, Energies 12 (2019) 1244.
  • [8] D. Dróżdż, K. Wystalska, K. Malińska, A. Grosser, A. Grobelak, M. Kacprzak, Management of poultry manure in Poland - current state and future perspectives, Journal of Environmental Management 264 (2020) 110327.
  • [9] H. Odum, Environmental accounting. Emergy and environmental decision making, John WilleySons, INC, 1996.
  • [10] P. Vassallo, I. Beiso, S. Bastianoni, M. Fabiano, Dynamic emergy evaluation of a fish farm rearing process, Journal of Environmental Management 90 (8) (2009) 2699–2708.
  • [11] Q. Hu, L. Zhang, C. Wang, Emergy-based analysis of two chicken farming system: a preception of organic production model in China, Precedia Environmental Sciences 13 (2012) 444–454.
  • [12] C. Castellini, S. Bastianoni, C. Granai, A. D. Bosco, M. B. M., Sustainability of poultry production using the emergy approach. comparison of conventional and organic rearing system, Agriculture, Ecosystem and Environment 114 (2006) 343–350.
  • [13] L. Zhang, B. Song, B. Chen, Emergy-based analysis of four farming systems: insight into agricultural diversification in rural China, Journal of Cleaner Production 28 (2012) 33–44.
  • [14] S. Brandt-Williams, Handbook of Emergy Evaluation. A Compendium of Data for Emergy Computation Issued in a Series of Folios, Center for Environmental Policy. Folio4 (2nd printing). Emergy Frlorid Agriculture. Environmental Engieering Sceinces, 2001.
  • [15] P. Billen, J. Costa, C. V. L. Van der Aa, J. Van Caneghem, Electricity from poultry manure: a cleaner alternative to direct land application, Journal of Cleaner Production 96 (2015) 467–475.
  • [16] N. Florin, A. Maddocks, S. Wood, A. Harris, High-temperature thermal destruction of poultry derived wastes for energy recovery in Australia, Waste Management 29 (4) (2009) 1399–1408
  • [17] R. Junga, M. Tańczuk, S. Sobek, M. Chabiński, Ziółkowski, S. Werle, Effect of the addition of laying hens manure to the straw on gasification efficiency in updraft gasifier under air atmosphere, Applied Thermal Engineering 226 (2023) 120269.
  • [18] M. Tańczuk, W. Kostowski, Technical, energetic and economic optimization analysis of selection of heat source for municipal sewage sludge dryer, Energies 14 (2) (2021) 316.
  • [19] M. Tańczuk, Reconfiguration of a small, inefficient district heating systems by means of biomass Organic Rankine Cycle cogeneration plants – Polish and German perspective after 2035, Renewable Energy 211 (2023) 452–458.
  • [20] Poultry Performance Plus portal. Heat production of broilers, https://poultryperformanceplus.com (2020).
  • [21] J. Feddes, J. Leonard, J. McQuitty, Broiler heat and moisture production under commercial conditions, Canadian Agricultural Engineering 26 (1984) 57–64.
  • [22] A. Winkel, J. Mosquera, A. Aarnink, N. O. P.W.G. Groot Koerkamp, Evaluation of manure drying tunnels to serve as dust filters in the exhaust of laying hen houses: Emissions of particulate matter, ammonia, and odour, Biosystems Engineering 162 (2017) 81–98.
  • [23] The National Centre for Emissions Management (KOBiZE), Wskaźniki emisji zanieczyszczeń ze spalania. Kotły o nominalnej mocy cieplnej do 5 MW, (in Polish), Warszawa (2015).
  • [24] The web page of BHSL Waste Solutions company, https://www.bhsl.com/portfolio-item/fbc-500-heat-only/, 2023.
  • [25] F. Dalólio, J. da Silva, A. de Oliveira, I.F.Ferreira Tinôco, R. Barbosa, M. de Oliveira Resende, L. Albino, S. Coelho, Poultry litter as biomass energy: A review and future perspectives, Renewable and Sustainable Energy Reviews 76 (2017) 941–949.
  • [26] X. Dong, S. Ulgiati, M. Yan, X. Zhang, W. Gao, Evaluating feasibility and sustainability of bioethanol production: A case study comparison in China (wheat) and Italy (corn), Emergy Synthesis 5: Theory and Applications of the Emergy Methodology. Proceeding from the Fifth Biennal Emergy Conference (2009) 281–298.
  • [27] J. Szargut, Egzergia. Poradnik obliczania i stosowania, Wydawnictwo Politechniki Śląskiej, 2007.
  • [28] S. Bastianoni, N. Marchettini, M. Panzieri, E. Tiezzi, Sustainability assessment of a farm in the Chianti area (Italy), Journal of Cleaner Production 9 (4) (2001) 365–373.
  • [29] E. Ortega, M. Miller, M. Anami, P. Beskow, From emergy analysis to public policy: Soybean in Brazil, Proceedings of the Second Biennial Emergy Research Conference. Gainesville: University of Florida (2001).
  • [30] The portal of National Environmental Accounting Database V2, http://www.emergy-nead.com/country/data (2020).
  • [31] E. Ortega, M. Anami, G. Diniz, Certification of food products using emergy analysis, Proceedings of Third International Workshop Advances in Energy Studies, S. Ulgiati (Editor) SG Editori, Padova, Italy (2002) 227–237.
  • [32] E. Ortega, O. Cavalett, R. Bonifácio, M. Watanabe, Brazilian soybean production: Emergy analysiswith an expanded scope, Bulletin of Science, Technology Society 25 (4) (2005) 323–334.
  • [33] E. Miedziejko, J. Jankowiak, Assessment of non-market environmental services in agricultural production, Ekonomia i Środowisko 2 (42) (2012) 121–135.
  • [34] A. Gasparatos, M. El-Haram, M. Horner, Assessing the sustainability of the UK Society using thermodynamic concepts: Part.1, Renewable and Sustainable Energy Reviews 13 (2009) 1074–1081.
  • [35] N. R. Council, Nutrient Requirements of Poultry: Ninth Revised Edition, 1994. Washington, DC: The National Academies Press (1994).
  • [36] Central Statistical Office of Poland (GUS), Zatrudnienie i wynagrodzenia w gospodarce w gospodarce narodowej w 2016 r. (in Polish), Warsaw (2017).
  • [37] P. Ghisellini, A. Zucaro, A. Vigila, S. Ulgiati, Monitoring and evaluating the sustainability of Italian agricultural sysmem. an emergy decomposition analysis, Ecological Modelling 271 (2014) 132–148.nic conductance of solid oxide fuel cells. J Power Technol 2011;91:82–92.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-838473ee-7dda-4b0f-beab-db131306de5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.