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Introduction 

The process of commercial vehicle exploitation can be analysed 
both in road transport companies, which operate in market condi-
tions, as well as in rescue services and other services responsible for 
national security, such as the fire brigade, army, police, ambulance 
service. In the first group, the most important criterion for assessing 
the operational quality of a vehicle is efficiency, usually measured as a 
profit/cost ratio [1]. The second group, especially the Police, is identi-
fied above all with keeping the peace, protecting the lives and health 
of people and property, and preserving order. Therefore, most of the 
research in this thematic area is mainly related to security issues in the 
broad sense, and concerns, for example:

Estimates of the likelihood of a fatal accident when driving a 1.	
police car [3] and the assessment of the risk of traffic incidents, 
including serious injuries resulting from participation in police 
operations [6, 25].
Possibilities of increasing the security level of police operations 2.	
through the use of special methods or devices, such as the bul-
letproof panels mounted on police cars proposed by Michaelson 
[27] or the warning light systems described by Lyons [26]. 
Methods for planning and optimising patrol routes [8, 10], with 3.	
particular emphasis on security issues [4] as well as the neces-
sary number of patrol cars depending on the intensity of the 
activities carried out and the time of their occurrence [22].

On the other hand, the readiness and reliability of police vehicles 
is considered a kind of status quo. The studies presented in the litera-
ture on the assessment of readiness of complex intervention systems 
(not only police ones) are of a unitary nature. This is mainly due to 
the limitations associated with the confidential nature of the empirical 
data. Record and billing documentation is usually kept in paper form 
and the practice of creating electronic databases encounters organisa-
tional barriers.

Transport tasks are complex processes, which means that their 
modelling based on classical techniques of reliability theory can be 
complicated and may not produce satisfactory results [21]. Alterna-
tive methods are used in such a case, e.g. reliable phase diagrams 
proposed by Lu et al. [24] or Dong et al. [9], as well as Markov proc-
esses [11, 16, 34], which are particularly popular in the readiness 
assessment. In the literature one can find models describing single 
means of transport, e.g. a passenger car – as in the case of Girtler and 
Ślęzak [12], a bus in the case of Landowski et al. [23], or a helicopter 
in the case of Szawłowski [23]. Complex transport systems are also 
studied. Theoretical basis for such considerations are included in the 
papers [2, 13, 20]. The systems are analysed as a whole [7, 32, 35] or 
their individual components are considered independently, and each 
of them is described by a separate model. Often, the authors point to 
Markov processes as a tool to solve a particular exploitation problem 
[29, 30]. Unfortunately, transport systems models based on empirical 
data are few and far between. There are only single studies available, 
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e.g. Migawa [28] studied the city bus exploitation system in this way, 
Żurek and Tomaszewska [39] analysed aircrafts and Restel [31] ana-
lysed urban rail transport systems. 

The literature review shows that the Markov models are a good 
tool to assess the readiness of both whole systems and individual ob-
jects [5, 19]. However, they have their own requirements and limita-
tions. These include, first of all, the form of available observations, 
the distribution of which should be exponential. It is an element that 
is often omitted in the presented analyses, which causes the use of 
Markov processes to be abused. It is more difficult to estimate param-
eters in the case of semi-Markov models, which is why they are less 
popular. They have less restrictive requirements concerning the form 
of distributions of studied variables (they can be arbitrary), therefore 
they are proposed in this article as a tool for police car fleet assess-
ment. The aim of the presented study was to estimate the level of their 
readiness at the assumption of three operating states: operation, ready-
to-be-used and repair (technical maintenance) and to present a method 
for a stochastic description of the exploitation process. Moreover, the 
intention of the authors was to emphasize that the three-state exploita-
tion model may be a useful and sufficient tool to assess the readiness 
of special vehicles. The application of such a model does not require 
complicated calculations as it is the case with complex multi-state 
models and can be used in the current practice of fleet management. 

2. Exploitation studies and preliminary analysis of the 
results

The subject of the study were police cars, performing patrol and 
intervention tasks in the capital city of Warsaw. A total of 20 Kia 
brand marked passenger cars were analysed. All vehicles came from a 
single production batch, which allowed the sample to be considered as 
homogeneous. The source database was the documentation of the use 
of police cars concerning police patrols and the records of technical 
services and repairs. 

On the basis of the collected observations, a three-element set of 
operating states { }1 2 3, , S S S S=  of the vehicles was singled out: 

operation (–– 1S ), 

ready-to-be-used (–– 2S ),

repair (including technical maintenance) (–– 3S ).
It was assumed that the time the vehicle remains in the state 1S  

(state 1S  duration) falls within the range from the moment of depar-
ture in order to perform an intervention task (patrol) to the moment of 
returning to the depot. The time the vehicle remains in the state 2S  
(state 2S  duration) falls within the range from the moment of starting 
a stop in the depot waiting for the instruction to perform the task until 
the moment of departure. The time the vehicle remains in the state 

3  S  (state 3S  duration) is determined by the time when the technical 
maintenance starts and ends.

Then, based on the actual interstate relations, permitted transi-
tions were determined, which are presented in Fig. 1 in the form of 
a graph.

Fig. 1. Permitted transitions graph

The analysis of statistical time distributions (expressed in minutes) 
of individual operating states was also carried out. Matching of real 

observations to selected theoretical distributions (normal, log-normal, 
exponential, Gamma and Weibull) was examined. The parameters of 
these distributions were estimated using the Statistica program, ap-
plying the highest reliability method. The quality of matching was 
assessed by comparing the distribution of observed frequencies with 
the expected ones. The statistics of the Kolmogorov-Smirnov test and 
the Akaike Information Criterion were calculated. On the basis of the 
results obtained, a gamma distribution was selected as the most suit-
able one. An exemplary analysis was presented for the distribution of 
the operation state - 1S  (Fig. 2). 

Fig. 2. Histogram of state duration times 1S

3. Estimation of parameters of semi-Markov model

3.1.	 Basic characteristics 

The conclusion from the preliminary analyses was the lack of pos-
sibility to use the Markov model (it requires exponential form of dis-
tributions of variables) and the assumption to carry out analyses with 
the use of the semi-Markov model, for which the form of distributions 
may be arbitrary.

For the examined process of car exploitation, a semi-Markov 
model with a finite set of states was determined by means of the 
Markov renewal process, based on [12, 13, 20]:

For N  denoting a set of non-negative integers, S  – a certain 
finite set, R+  – a set of non-negative real numbers, while Ω( )Ù, ,Ρ  
– a probabilistic space in which for each n∈Ν  random variables are 
specified:

	 ξn S:Ω→ 	 (1)

	 ϑn R:Θ→ + 	 (2)

Two-dimensional sequence of random variables { }, :n n n Nξ ϑ ∈  
is referred to as the Markov renewal process if for each n N∈ , 
,i j S∈ , t R+∈ :

P j t i P j t in n n n n n n nξ ϑ ξ ξ ξ ϑ ϑ ξ ϑ ξ+ + − + += < = … …{ } = = < ={ }1 1 1 0 0 1 1, , , , , , ,

(3)

and

	 P i P iξ ϑ ξ0 0 00= ={ } = ={ }, 	 (4)
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This definition shows that Markov renewal process is a specific 
case of the two-dimensional Markov process [14]. Transition prob-
abilities of this process depend solely on the discrete value of the co-
ordinate. Markov renewal process ξ ϑn n n N, : ∈{ }  is called homoge-
neous if probabilities:

	 P j t i Q tn n n ijξ ϑ ξ+ += < ={ } = ( )1 1, 	 (5)

do not depend on n.

Functional matrix: 

	 ( ) ( ) , ,ijQ t Q t i j S = ∈  	 (6)

is called the renewal kernel. Semi-Markov process is defined basing 
on the homogeneous Markov renewal process 14.

Let:

	 ( ) { }sup 0 : mM t m tτ= ≥ ≤ 	 (7)

where:

	 0 1m mτ ϑ ϑ ϑ= + +…+ 	 (8)

The stochastic process ( ){ }:M t t R+∈  is constant within the range 

τ τm m, )+[ 1 . The stochastic process ( ){ }:X t t R+∈  is determined 

by the formula:

	 X t M t( ) = ( )ξ 	 (9)

is a semi-Markov model, 

Defining a model semi-Markov process requires defining, in ad-
dition to the kernel of the process, its initial distribution [13, 17, 38]. 
The process of vehicle exploitation was divided into three phases of 
random duration. In this case, the renewal kernel of the semi-Markov 
process, according to the graph of permitted transitions (Fig. 1), takes 
the form:

	 ( )
( ) ( )

( )
( )

12 13

21

31

0
 0 0

0 0

Q t Q t
Q t Q t

Q t

 
 =  
  

	 (10)

This matrix constitutes a model of changes in the distinguished 
states of the process. The non-zero elements ( )tijQ  of the matrix 
( )Q t  are the conditional probabilities of the process of transition 

from the state iS  to the state jS , within a time period of not more 
than t , specified according to the formula (11). They depend on the 
distribution of random variables, namely the process durations in the 
distinguished states:

	Q t P X j t X iij m m m m( ) = = − ≤ ( ) =( )( )+ +τ τ τ τ1 1) , �  for  0  t ≥   (11)

where a random variable mτ  means the moment of m -th change of 
state.

Initial distribution: ( ) { } 0 ,    1,  2,  3ip i S∈ =  was adopted in the 
following form:

	 ( )

1,  if  1
 

0   
0,  if  1

i

i

p
i

=

=
 ≠


	 (12)

where: 

	 ( ) ( ){ }0 0 ,      1,  2,  3ip P X i i= = = 	 (13)

These elements make it possible to determine the probabilistic pa-
rameters of the exploitation process that are being searched for. For 
the semi-Markov model, the transition probabilities, defined as condi-
tional probabilities [15], are important:

	 ( ) ( ) ( ){ }0 , , ijP t P X t j X i i j S= = = ∈ 	 (14)

( )ijP t  are the probabilities of transition from the state iS  to the 
state jS at the moment t . They were calculated on the basis of real 
interstate relations, according to the formula (15). 

	   ij
ij

ikk S

n
p

n∈

=
∑ 	 (15)

where:

ijn  – number of transitions from the state iS  to the state jS ,

ik
k S

n
∈
∑  - number of all transitions (exits) from the state iS ,

The distribution of probability of changes of the distinguished 
operating states (in one step), assuming that each graph arch of the 
exploitation process representation (Fig. 1), connecting two states of 
the process, corresponds to the value of probability  ijp , is presented 
in Table 1.

The calculated values of probabilities of transitions refer to sets 
of states, not time period. For example, 13 0.2p =  means that among 
all the exits from the state 1S , transitions from the state 1S  to 2S  
constitute 20%.

3.2.	 Boundary properties 

An important role in the study of the process of exploitation of 
cars modelled by the Markov chain is played by its boundary proper-
ties [13, 20], and especially by the boundaries of probabilities ( )jp n  
and ( )ijp n  at  ,n→∞ , which describe the behaviour of the process 
after a long time [13, 36]. An important concept in this respect is the 
stationary distribution of homogeneous Markov chain, described by 
the vector Π [14]:

	 Π=[π1, π2, π3]	 (16)

Table 1.	 Transitions probabilities matrix ijp

ijp 1S 2S 3S

1S 0 0.8 0.2

2S 1 0 0

3S 0 1 0
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so as:

	 Π= Π P	 (17)

where:

	
11 12 13

21 22 23

31 32 33

P
p p p
p p p
p p p

 
 =  
  

	 (18)

and:

	
j

j
=
∑ =

1

3
1π 	 (19)

this means that if the chain at a certain point in time m  reaches the 
stationary distribution, then for each subsequent moment  n  greater 
than m  the unconditional distribution will remain the same. 

In the case of the examined process, some limits exist:

	 lim
n

ij jp n
→∞

( ) = π      , 1, 2, 3i j = 	 (20)

where:

( )ijp n  – probability of transition from the state  iS  to the state jS  
in n  steps. 

Calculated probability matrix of changes in operating states in-
serted into the Markov chain process (Table 1) made it possible to 
determine the stationary probabilities π j , according to a system of 
equations (17). 

For the examined process, for the 3-state model, the estimation 
of the stationary probabilities π j  required the solution of the matrix 
equation: 

	

 
12 13

1 1
21

2 2
32

3 3

0
0    0    

0 0

T Tp p
p

p

π π
π π
π π

 
    
    ⋅ =    
       

 

 	 (21)

with the normalization condition:

	 π1 + π2 + π3 = 1	 (22)

which is equivalent to the following system of equations: 

	

π π
π π π
π π
π π π

2 21 1

1 12 3 32 2

1 13 3

1 2 3 1

⋅ =
⋅ + ⋅ =

⋅ =

+ + =











p
p p
p 	 (23)

After substituting the value of probability of transitions (Table 1), 
we get:

	

π π
π π π
π π

π π π

2 1

1 3 2

1 3

1 2 3

0 8
0 2

1

=
+ =

=

+ + =











. �

. �
	 (24)

The solution of the system of equations is presented in Table 2.

Table 2.	 Stationary probabilities jπ  of the distinguished operating states

1S 2S 3S

iπ 0.455 0.455 0.09

[ ] %iπ 45.5 45.5 9

Next, on the basis of the directed graph (Fig. 1) determining the 
probability of transitions of Markov chain states (Table 1), and on 
the basis of empirical times ijt  of duration of individual states, con-
ditional estimations of expected ( )ijE T  times of duration of process 
( )X t  states were made on the basis of the estimator defined by the 

formula (24):

	 ( )   ij
ij ij

ijj S

t
E T T

t∈

= =
∑

	 (25)

The matrix ,  , 1, 2, 3ijT T i j = =   of estimated conditional values 

of expected times ijT  is presented in Table 3.

Table 3.	 Estimated expected values of conditional times ijT  

[ ] ijT minutes 1S 2S 3S

1S 844 845

2S 479

3S 388

When the elements of the matrix P  and T  are known, the ex-
pected values , 1, 2, 3 iET i =  of the unconditional duration times of 
individual states of the process can be estimated according to the de-
pendency:

	 ET T p Ti i
j

ij ij
 = = ⋅

=
∑

1

3

	 (26)

For the examined 3-state process of vehicle exploitation, the prob-
lem of estimating the values of expected unconditional duration of 
individual states of the process boiled down to the solution of the fol-
lowing system of equations:

	
T p T p T
T p T
T p T

1 12 12 13 13

2 21 21

3 32 32

= ⋅ + ⋅
= ⋅
= ⋅









�	 (27)

The estimated values of unconditional times iT   are shown in 
Table 4. 

The random variables , 1, 2, 3iT i =  have finite positive expected 
values. This makes it possible to determine the boundary distribution 
of the semi-Markov process. Based on the stationary distribution of 
the inserted Markov chain (Table 2) and the estimated expected values 
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of the process duration times (Table 4), boundary probabilities were 
estimated according to the formula (28) [20]:

	 P T
T

ii
i i

k S k k
=

⋅
⋅

=
∈∑
π
π

, , ,1 2 3 	 (28)

The calculated boundary distribution of probability of semi-
Markov process states is presented in Table 5.

Table 5.	 Boundary probabilities distribution iP  

Percentage 1P 2P 3P

probabilities 0.6026 0.3419 0.0555

distribution 60 34 6

The values iP  constitute boundary probabilities determining that 
in a long period of operation ( t →∞ ) the vehicle will remain in a 
given operating state. 

The highest values were achieved for the state of operation (60%), 
which is a very good result. Ready-to-be-used reaches the boundary 
value of 34%, which is also a satisfactory result and shows, on the one 
hand, a high level of readiness of the examined vehicles and, on the 
other hand, a significant reserve which, however, in the case of struc-
tures operating in an unforeseen, intervention-based manner, seems 
rational. In boundary terms, there is only 5.5% probability of vehicles 
being a repair state.

The technical readiness factor K  is the sum of appropriate prob-
abilities of reliability states. For the proposed model of vehicle opera-
tion, the states 1S  and 2S  are roadworthy, while the state 3S  is the 
state of unfitness. Hence, the readiness of the examined vehicles can 
be calculated as the sum of the boundary probabilities of the states 

1S  and 2S :

	 1 2K P P= + 	 (29)

The calculated readiness factor is 94.45K =  and means that the 
vehicles from the examined group for almost 95% of the time remain 
in the technical readiness state. 

3.3.	 Time of first transition of the vehicle exploitation proc-
ess to a subset of states (time of failure-free operation)

Another important characteristic describing the processes of ve-
hicle exploitation is the time of the first transition of the process to a 
separate state or a set of states { }A  [18]. Based on the distribution 
of this time and its parameters, the probability of vehicles being in a 
particular state or set of states may be determined [20, 37]. Function 
in a form:

	 Φ ΘiA At P t X i t( ) = ≤ ( ) =( ) ≥0 0, 	 (30)

is a distribution function of the distribution of a random variable 
Θ ∆A A

=τ , which means the time elapsing from the moment when 
the semi-Markov process takes the value 'i A∈  until the moment 
when the process takes any value from the subset of states A , where 
A S⊂  and A S A′ = − .

while: 

	 ∆A nn N X A= ∈ ( )∈{ }min : τ 	 (31)

For regular semi-Markov processes, in which the subset A  is 
strongly achievable from any state belonging to ’A , random vari-
ables ijT  have finite and positive expected values ( )ijE T , there are 
expected values E(ΘA') and they are the only solutions of the system 
of equations [13, 20]:

	 I P TA A A−( ) =′ ′ ′Θ 	 (32)

where:

AP ′ 			  – probability matrix of transitions within the set ’A

È A′ 		 – process kernel specified in the set ’A

AT ′ 			  – random variables of unconditional duration times of the proc-
ess in the set of states ’A

Since in the process under consideration the transport task will be 
performed if there is no failure of the means of transport, the distribu-
tion of time of task execution (failure-free operation of the system) 
can be found by reducing the original model by the state 3S  - repair. 
In such a case the subset of states { }1 2  , A S S=′ , while the subset of 
states 3{A S= }, and the elements of the equation (32) take the form:

	 I T
E T
E TA A=









 =













=
( )
( )









′ ′

1 0
0 1

13

23

1

2
, , ,Θ

Θ

Θ
	 (33)

	 ( ) 12

21 

0
0A

p
P s

p′
 

=  
 

	 (34)

where:

	 [ ]      ,A ikP p i k A′ = ∈ ′ 	 (35)

is a sub matrix of matrix ijP  (Table 1). Random variable Θij 
means 

the time elapsed between the initial time and the time when the repair 
condition is first reached, provided that one of the conditions of set 
A’ has commenced at the time considered initial. Hence, it means the 
time of system failure-free operation. For the analysed semi-Markov 
model, the matrix equation (32) takes the following form:

	
1 0
0 1

0

0
12

2 1

1 3

2 3

1







 −
























⋅











=

( )p

p
E T
E T

Θ

Θ 22( )








 	 (36)

After substituting appropriate values from Table 1 and Table 4 
we get:

	 1 0
0 1

0 0 8
1 0

844 2
479

1 3

2 3









 −



















 ⋅











=









. .Θ

Θ  	 (37)

which comes down to solving the system of equations:

Table 4.	 Unconditional times [ ]  minutesiT  of process 
duration in 3 operating states

state iT  [minutes]

1 844.2

2 479

3 388
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Θ Θ

Θ Θ
1 3 2 3

1 3 2 3

0 8 844 2

479

− =

− + =







. .
	 (38)

The results of calculations of the above equations are presented 
in Table 6.

Table 6.	 Values of the elements of the matrix Θ  of the time of first transi-
tion for all vehicles

Θ  
[ ]min [ ] h

     Θ1 3 6137 102.3

     Θ1 3 6616 110.3

If the initial decomposition of the exploitation process is a vector:

	 [ ]1 2 3, ,p p p p= 	 (39)

which in the examined process, according to the original assumption 
(12), takes the form: 

	 [ ]1, 0, 0p = 	 (40)

then the first row of the single-column matrix solving this equation 
is the expected value of the task execution time, which in this case is 
more than 102 hours.

It is also possible to determine the time distribution for the correct 
operation of the object. Using the information that the probability of 
the transition ( )ijP t , defined as conditional probabilities [20]:

	 ( ) ( ) ( ){ }| 0 ,  ,ijP t P X t j X i i j S= = = ∈ 	 (41)

fulfil the Feller’s equations:

	 ( ) ( ) ( ) ( )
0

1 ,  ,
t

ij ij i kj ik
k S

P t G t P t x dQ x i j Sδ
∈

=  −  + − ∈  ∑ ∫      (42)

it is possible to find the solution to this system using Laplace – Stieltjes 
transformation:

	 ( ) ( ) ( ) ( )
0

1 ,  ,
t

ij ij i kj ik
k S

P t G t P t x dQ x i j Sδ
∈

=  −  + − ∈  ∑ ∫      (43)

	 ( ) ( )
0
 st

ij ijp s e dP t
∞

−= ∫ 	 (44)

	 ( ) ( )
0
 Qst

ik ikq s e d t
∞

−= ∫ 	 (45)

where ( ) ikQ t is the kernel of the process of renewal of a subset of 
states A′  while ( )G  i t denotes the distribution function of a random 
variable iT  of the duration of the i-th state of the semi-Markov proc-
ess, regardless of the state to which the transition occurs at the mo-
ment 1nτ +  [13]:

	 ( ) { } ( ){ }1 / 1 , i i n n nG t P T t P t X i Sτ τ τ+= < = − < = ∈ 	 (46)

In this case, the above system of integral equations is correspond-
ent to the system of algebraic equations with unknown transforms 

( ),  , ijp s i j S∈ :

	 ( ) ( ) ( ) ( )1
,  ,i

ij ij ik kj
k S

g s
p s q s p s i j S

s
δ

∈

 − 
= + ∈ 

 
∑



   	 (47)

the system in the matrix notation takes the form:

	 ( ) ( ) ( )11[ ]  1P s I q s g s
s

−= −  −  

  	 (48)

When solved, a transforms matrix is obtained. Since the initial 
state is the state 1S , the first line is simultaneously a one-dimensional 
distribution of the process. 

For of the examined system:

	 ( ) ( )
( )

12

21

0
 

0
Q t

Q t
Q t
 

=  
 

	 (48)

where ( )12Q t  and ( )21Q t  are distribution functions of estimated 
Gamma decompositions:

	 Q t e t t

t
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1

1

1 1 1
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>

−
− + −β α αβ
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, 	 (50)
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t
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1

2

2 2 2
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>

−
− + −β α αβ
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	 (51)

and:

	 Γ α α( ) =
∞

− −∫
0

1t e t 	 (52)

since for the Gamma decomposition the Laplace-Stieltejes transform 
takes the form:
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the elements of equation (48) take the form:
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and:
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The solution is a matrix whose elements of the first line are as 
follows:
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(57)

After calculating the reverse transforms, the boundary distribution 
of the intensity of use of the object is obtained. For the state 1S  we get 
the function in the form:

( ) 0.66956 0.23043 0.0446957
1 0.0026857 e 0.006151 e 0.129546 e 0.6t t tP t − − −= − − +

The graph of this function is shown in Fig. 3

Fig. 3. Function graph ( )1P t

The function stabilizes in about 120 minutes, and within the 
boundary, for t →∞ , it aims towards the previously calculated 
boundary value of the semi-Markov process of 1 60%P = . 

4. Conclusions 

The use of semi-Markov processes allows to determine the bound-
ary readiness factor and to carry out the analysis of the duration times 
of distinguished operating states of special vehicles. It also enables an 
objective assessment of the intensity of vehicle operation and the time 
of its failure-free operation. Analysing readiness factors, it is possi-
ble to search for optimal algorithms of vehicle operation and mainte-
nance, as well as to analyse the quality of vehicle fleet selection.

The validity of the above assumptions was confirmed by the con-
ducted research. The proposed semi-Markov model made it possible 
to diagnose the system of exploitation of police cars indicating that it 
is characterized by a satisfactory level of probability of vehicles being 
in the state of operation ( 1 0.6P = ) and ready-to-be-used ( 2 0.34P = ). 
The forecast technical readiness factor amounted to 95%.K =

Therefore, the effectiveness of the application of semi-Markov 
processes to model the readiness of special vehicle exploitation sys-
tems has been demonstrated. The three-state model distinguishing the 
state of operation of the vehicle, the state of ready-to-be-used and the 
state of repair (technical maintenance) proved to be justified. In this 
case, it was not necessary to create complex, multi-state structures 
of the exploitation process model requiring advanced computational 
programs. The presented, three-state model is expandable in a situa-
tion where a deeper analysis of selected aspects of the system readi-
ness would be necessary.
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