Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Shape optimization problems constrained by variational inequalities (VI) are non-smooth and non-convex optimization problems. The non-smoothness arises due to the variational inequality constraint, which makes it challenging to derive optimality conditions. Besides the non-smoothness there are complementary aspects due to the VIs, as well as distributed, non-linear, non-convex and infinite-dimensional aspects, due to the shapes, which complicate setting up an optimality system and, thus, developing efficient solution algorithms. In this paper, we consider Gâteaux semiderivatives for the purpose of formulating optimality conditions. In the application, we concentrate on a shape optimization problem constrained by the obstacle problem.
Czasopismo
Rocznik
Tom
Strony
141--161
Opis fizyczny
Bibliogr. 56 poz.
Twórcy
autor
- Helmut-Schmidt-University / University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
autor
- Trier University, Universitätsring 15, 54296 Trier, Germany
autor
- Helmut-Schmidt-University / University of the Federal Armed Forces Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany
Bibliografia
- Ameur, H., Burger, M. and Hackl, B. (2004) Level Set Methods for Geometric Inverse Problems in Linear Elasticity. Inverse Problems, 20, 673–696.
- Barbu, V. (1984) Optimal Control of Variational Inequalities. Research Notes in Mathematics, 100. Springer.
- Bauer, M., Harms, P. and Michor, P. (2011) Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 3, 389–438.
- Bracken, J. and McGill, J. (1973) Mathematical programs with optimization problems in the constraints. Operations Research, 21, 37–44.
- Brézis, H. (1971) Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Contributions to Nonlinear Functional Analysis, 101–156.
- Brézis, H. and Stampacchia, G. (1968) Sur la regularite de la solution d’inequations elliptiques. Bulletin de la Société Mathématique de France, 96, 153–180.
- Carstensen, C., Demkowicz, L. and Gopalakrishnan, J. (2016) Breaking spaces and forms for the dpg method and applications including Maxwell equations. Computers & Mathematics with Applications, 72, 494–522.
- Christof, C., Meyer, C., Walther, S. and Clason, C. (2018) Optimal control of a non-smooth semilinear elliptic equation. https://doi.org/10.3934/mcrf.2018011.
- Delfour, M. C. (2020) Hadamard semidifferential of functions on an unstructured subset of a TVS. Pure and Applied Functional Analysis, 5, 1039–1072, www. yokohamapublishers.jp/online-p/Pafa/vol5/pafav5n5p1039.pdf.
- Denkowski, Z. and Migorski, S. (1998) Optimal shape design for hemivariational inequalities. Universitatis Iagellonicae Acta Matematica, 36, 81–88.
- Droske, M. and Rumpf, M. (2007) Multi scale joint segmentation and registration of image morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 2181–2194.
- Gasiński, L. (2001) Mapping method in optimal shape design problems governed by hemivariational inequalities. In: Shape Optimization and Optimal Design, J. Cagnol, M. Polis, and J.-P. Zolesio, eds., Lecture Notes in Pure and Applied Mathematics, 216, Marcel Dekker, 277–288.
- Glowinski, R. (1984) Numerical methods for nonlinear variational problems. Springer.
- Harker, P. and Pang, J.-S. (1988) Existence of optimal solutions to mathematical programs with equilibrium constraints. Operations Research Letters, 7, 61–64.
- Heinemann, C. and Sturm, K. (2016) Shape optimization for a class of semilinear variational inequalities with applications to damage models. SIAM Journal on Mathematical Analysis. 48, 3579–3617.
- Herzog, R. and Loayza-Romero, E. (2020) A manifold of planar triangular meshes with complete Riemannian metric. ArXiv, abs/2012.05624.
- Herzog, R., Meyer, C. and Wachsmuth, G. (2012) C-stationarity for optimal control of static plasticity with linear kinematic hardening. SIAM Journal on Control and Optimization, 50, 3052–3082.
- Herzog, R., Meyer, C. and Wachsmuth, G. (2013) B- and strong stationarity for optimal control of static plasticity with hardening. SIAM Journal on Control and Optimization, 23, 312–352.
- Hintermüller, M. and Kopacka, I. (2009) Mathematical programs with complementarity constraints in function space: C- and strong stationarity and a path-following algorithm. SIAM Journal on Optimization, 20, 868–902.
- Hintermüller, M. and Kopacka, I. (2011) A smooth penalty approach and a nonlinear multigrid algorithm for elliptic mpecs. Computational Optimization and Applications, 50, 111–145, https://doi.org/10.1007/s10589-009-9307-9.
- Hintermüller, M. and Laurain, A. (2011) Optimal shape design subject to elliptic variational inequalities. SIAM Journal on Control and Optimization, 49, 1015–1047.
- Ito, K. and Kunisch, K. (2000) Optimal Control of Elliptic Variational Inequalities. Applied Mathematics and Optimization, 41, 343–364.
- Ito, K. and Kunisch, K. (2003) Semi-Smooth Newton Methods for Variational Inequalities of the First Kind. ESAIM: M2AN – Mathematical Modelling and Numerical Analysis, 37, 1, 41–62.
- Kendall, D. (1984) Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 81–121.
- Kikuchi, N. and Oden, J. (1988) Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM.
- Kinderlehrer, D. and Stampacchia, G. (1980) An Introduction to Variational Inequalities and Their Applications. Academic Press.
- Klatte, D. and Kummer, B. (2002) Nonsmooth Equations in Optimization: Regularity, Calculus, Methods, and Applications. Kluwer Academic.
- Kočvara, M. and Outrata, J. (1994) Shape optimization of elasto-plastic bodies governed by variational inequalities. In: Boundary Control and Variation, J.-P. Zolesio, ed., Lecture Notes in Pure and Applied Mathematics, 163, Marcel Dekker, 261–271.
- Kovtunenko, V. and Kunisch, K. (2023) Directional differentiability for shape optimization with variational inequalities as constraints. ESAIM Control Optim. Calc. Var., 29, 64, https://doi.org/10.1051/cocv/2023056.
- Ling, H. and Jacobs, D. (2007) Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 286–299.
- Lions, J. and Stampacchia, G. (1967) Variational inequalities. Communications on Pure and Applied Mathematics, 20, 493–519.
- Liu, W. and Rubio, J. (1991a) Optimal shape design for systems governed by variational inequalities, part 1: Existence theory for the elliptic case. Journal of Optimization Theory and Applications, 69, 351–371.
- Liu, W. and Rubio, J. (1991b) Optimal shape design for systems governed by variational inequalities, part 2: Existence theory for the evolution case. Journal of Optimization Theory and Applications, 69, 373–396.
- Luft, D., Schulz, V. and Welker, K. (2020) Efficient techniques for shape optimization with variational inequalities using adjoints. SIAM Journal on Optimization, 30, 1922–1953, https://doi.org/10.1137/19M1257226.
- Luo, Z., Pang, J. and Ralph, D. (1996) Mathematical Programs with Equilibrium Constraint. Cambridge University Press.
- Michor, P. and Mumford, D. (2005) Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Mathematica, 10, 217–245.
- Michor, P. and Mumford, D. (2007) An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23, 74–113.
- Mignot, F. and Puel, J. (1984) Optimal control in some variational inequalities. SIAM Journal on Control and Optimization, 22, 466–476.
- Mordukhovich, B. S. (2006) Extremal principle in variational analysis. In: Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, Berlin, Heidelberg, 171–259.
- Myśliński, A. (2001) Domain optimization for unilateral problems by an embedding domain method. In: Shape Optimization and Optimal Design, J. Cagnol, M. Polis, and J.-P. Zolesio, eds., Lecture Notes in Pure and Applied Mathematics, 216, Marcel Dekker, 355–370.
- Myśliński, A. (2007) Level set method for shape and topology optimization of contact problems. In: IFIP Conference on System Modeling and Optimization. Springer, 397–410.
- Myśliński, A. (2008) Level set approach for shape optimization of contact problems. In: European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS, P. Neittaanmaki, T. Rossi, K. Majava, O. Pironneau, and I. Lasiecka, eds., Engineering Analysis with Boundary Elements, 32 (11), 986–994.
- Neittaanmäki, P., Sprekels, J. and Tiba, D. (2006) Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics. Springer.
- Outrata, J., Kočvara, M. and Zowe, J. (1998) Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications, and Numerical Results. In: Nonconvex Optimization and Its Applications, 152. Kluwer Academic Publisher.
- Panagiotopoulos, P. (1985) Inequality Problems in Mechanics and Applications. Birkhauser.
- Pryymak, L., Suchan, T. and Welker, K. (2023) A product shape manifold approach for optimizing piecewise-smooth shapes. In: F. Nielsen and F. Barbaresco, eds.,Geometric Science of Information. GST 2023. LNCS 14071. Cham, Springer Nature Switzerland, 21–30.
- Scheel, H. and Scholtes, S. (2000) Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity. Mathematics of Operations Research, 25, 1–22.
- Schiela, A. and Wachsmuth, D. (2013) Convergence analysis of smoothing methods for optimal control of stationary variational inequalities with control constraints. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 47, 771–787, https://doi.org/10.1051/m2an/2012049, http://www.numdam.org/ articles/10.1051/m2an/2012049/.
- Schmidt, S. and Schulz, V. (2023) A linear view on shape optimization. SIAM Journal on Control and Optimization, 61, 2358–2378.
- Sokolowski, J. and Zolesio, J.-P. (1992) Introduction to Shape Optimization. Springer Series in Computational Mathematics, Springer, Berlin, Germany.
- Suchan, T., Schulz, V. and Welker, K. (2024) Shape Optimization in the Space of Piecewise- Smooth Shapes for the Bingham Flow Variational Inequality. arXiv: 2403.02106v2. Preprint.
- Troianiello, G. (2013) Elliptic Differential Equations and Obstacle Problems. Springer Science & Business Media. Springer.
- Welker, K. (2016) Efficient PDE Constrained Shape Optimization in Shape Spaces, PhD thesis, Universitat Trier.
- Wirth, B., Bar, L., Rumpf, M. and Sapiro, G. (2011) A continuum mechanical approach to geodesics in shape space. International Journal of Computer Vision, 93, 293–318.
- Wirth, B. and Rumpf, M. (2009) A nonlinear elastic shape averaging approach. SIAM Journal on Imaging Sciences, 2, 800–833.
- Zolésio, J.-P. (2007) Control of moving domains, shape stabilization and variational tube formulations. International Series of Numerical Mathematics, 155, 329–382.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8379cd6b-fd4b-4607-88a1-a25398234e01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.