PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of the Solvent System on the Morphology and Performance of Nylon 6 Nanofibre Membranes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ rozpuszczalników na morfologię i wykonanie membran z nanowłókien Nylon 6
Języki publikacji
EN
Abstrakty
EN
Nylon 6 nanofibre membranes were prepared by electrospinning of nylon 6 solutions with various volume ratios of trifluoroethyl alcohol (TFE) and formic acid (FA). The effect of the solvent type on the morphology of nylon 6 nanofibre membranes was investigated. Results showed that all membranes studied showed uniform, defect-free structures with very thin nanofibre diameters. The addition of formic acid led to a significant decrease in average fibre diameters. The average fibre diameters were 660, 186, 87, 62 and 30 nm for nylon 6 nonofibre prepared using the binary solution system and trifluoroethyl alcohol/formic acid (100:0), (75:25), (50:50), (25:75) & (0:100) respectively. In addition, the nylon 6 nanofibre membranes prepared using formic acid showed the highest strength with the highest porosity and the lowest average fibre diameters.
PL
Membrany z nanowłókien Nylon 6 przygotowano przez elektroprzędzenie roztworów Nylonu 6 o różnych stosunkach objętości alkoholu trifluoroetylowego (TFE) i kwasu mrówkowego (FA). W pracy zbadano wpływ rodzaju rozpuszczalnika na morfologię membran z nanowłókien Nylon 6. Wyniki wykazały, że wszystkie badane membrany były jednolite, pozbawione wad struktury o bardzo cienkich średnicach nanowłókien. Dodatek kwasu mrówkowego doprowadził do znacznego zmniejszenia średnic włókien. Średnice nanowłókien wyniosły 660, 186, 87, 62 i 30 nm. Nanowłókna przygotowano z zastosowaniem roztworu alkoholu trifluoroetylowego i kwasu mrówkowego: 100:0; 75:25; 50:50; 25:75 i 0:100. Ponadto przygotowane przy użyciu kwasu mrówkowego membrany z nanowłókien wykazały najwyższą wytrzymałość przy największej porowatości i najniższych średnicach włókien.
Rocznik
Strony
97--101
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Istanbul Technical University, Textile Engineering, Gumussuyu 34437, Istanbul, Turkey
Bibliografia
  • 1. Oliveira J, Brichi GS, Marconcini JM, Mattoso LHC, Glenn GM, Medeiros ES. Effect of Solvent on the Physical and Morphological Properties of Poly(Lactic Acid) Nanofibers Obtained by Solution Blow Spinning. Journal of Engineered Fibers and Fabrics 2014; 9: 117-125.
  • 2. Hekmati AH, Khenoussi N, Nouali H, Patarin J, Drean J-Y. Effect of Nanofiber Diameter on Water Absorption Properties and Pore Size of Polyamide-6 Electrospun Nanoweb. Textile Research Journal 2014; 84: 2045-2055.
  • 3. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P, du Toit LC, Ndesendo VM, A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. Journal of Nanomaterials, 2013.
  • 4. Panthi G, Barakat NA, Risal P, Yousef A, Pant B, Unnithan AR, Kim HY. Preparation and Characterization of Nylon-6/Gelatin Composite Nanofibers via Electrospinning for Biomedical Applications. Fibers and Polymers 2013; 14: 718-723.
  • 5. Kausar A. A Study on High-Performance Poly (Azo-Pyridine-Benzophenone-Imide) Nanocomposites Via Self-Reinforcement of Electrospun Nanofibers. Iranian Polymer Journal 2014; 23: 127-136.
  • 6. Casasola R, Thomas NL, Trybala A, Georgiadou S. Electrospun Poly Lactic Acid (PLA) Fibres: Effect of Different Solvent Systems on Fibre Morphology and Diameter. Polymer, 2014, 55: 4728-4737.
  • 7. Ahmet Ç, Kumbasar E P A, Akduman Ç. Çözgen Karişimlarinin Elektrolif Çekim Yöntemi İle Üretilmiş Termoplastik Poliüretan Nanoliflerinin Morfolojisine Etkisi, Tekstil Ve Konfeksiyon, 25 38-46.
  • 8. Erdem R, Usta I, Akalin M, Atak O, Yuksek M. Pars A. The Impact Of Solvent Type And Mixing Ratios Of Solvents On The Properties Of Polyurethane Based Electrospun Nanofibers. Applied Surface Science 2015; 334: 227-230.
  • 9. Choktaweesap N, Arayanarakul K, Aht-Ong D, Meechaisue C, Supaphol P. Electrospun Gelatin Fibers: Effect of Solvent System on Morphology and Fiber Diameters. Polymer Journal 2007; 39: 622-631.
  • 10. Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P. Electrospun Cellulose Acetate Fibers: Effect of Solvent System on Morphology and Fiber Diameter. Cellulose 2007; 14: 563-575.
  • 11. Kaya A, Hockenberger A. Effects of Polymer Structure on the Electrospun Polyamide Nanofibers. Journal of Textile & Apparel/Tekstil ve Konfeksiyon 2017; 27.
  • 12. Nirmala R, Jeong JW, Oh HJ, Navamathavan R, El-Newehy M, Al-Deyab SS, Kim HY. Electrical Properties of Ultrafine Nylon-6 Nanofibers Prepared Via Electrospinning. Fibers and Polymers 2011; 12: 1021-1024.
  • 13. Pant HR, Bajgai MP, Nam KT, Seo YA, Pandeya DR, Hong ST, Kim HY. Electrospun Nylon-6 Spider-Net Like Nanofiber Mat Containing Tio2 Nanoparticles: A Multifunctional Nanocomposite Textile Material. Journal of Hazardous Materials 2011; 185: 124-130.
  • 14. Nirmala R, Panth HR, Yi C, Nam KT, Park S-J, Kim HY, Navamathavan R. Effect of Solvents on High Aspect Ratio Polyamide-6 Nanofibers Via Electrospinning. Macromolecular Research 2010; 18: 759-765.
  • 15. Hasan MM, Nayem KA, Hossain MB, Nahar S. Production of Tissue Engineering Scaffolds from Poly Caprolactone (PCL) and its Microscopic Analysis. International Journal of Textile Science, 2014; 3: 39-43.
  • 16. Arayanarakul K, Choktaweesap N, Ahtong D, Meechaisue C, Supaphol P. Effects of Poly (Ethylene Glycol), Inorganic Salt, Sodium Dodecyl Sulfate, and Solvent System on Electrospinning of Poly (Ethylene Oxide). Macromolecular Materials and Engineering, 2006; 29: 581-591.
  • 17. Härdelin L, Thunberg J, Perzon E, Westman G, Walkenström P, Gatenholm P, Electrospinning of Cellulose Nanofibers from Ionic Liquids: The Effect of Different Cosolvents. Journal of Applied Polymer Science 2012; 125: 1901-1909.
  • 18. Liu H, Tang C. Electrospinning of Cellulose Acetate in Solvent Mixture N, N-Dimethylacetamide (Dmac)/Acetone. Polymer Journal 2007; 39: 65.
  • 19. Xu S, Zhang J, He A, Li J, Zhang H, Han CC. Electrospinning of Native Cellulose from Nonvolatile Solvent System. Polymer 2008; 49: 2911-2917.
  • 20. Son WK, Youk JH, Lee TS, Park WH. Electrospinning of Ultrafine Cellulose Acetate Fibers: Studies of a New Solvent System and Deacetylation of Ultrafine Cellulose Acetate Fibers. Journal of Polymer Science Part B: Polymer Physics, 2004; 42: 5-11.
  • 21. Wu X, Wang L, Yu H, Huang Y. Effect of Solvent on Morphology of Electrospinning Ethyl Cellulose Fibers. Journal of Applied Polymer Science 2005; 97: 1292-1297.
  • 22. Son WK, Youk JH, Lee TS, Park WH. The Effects of Solution Properties and Polyelectrolyte on Electrospinning of Ultrafine Poly (Ethylene Oxide) Fibers. Polymer 2004; 45: 2959-2966.
  • 23. Düzyer Ş. Fabrication of Electrospun Poly (Ethylene Terephthalate) Scaffolds: Characterization and their Potential on Cell Proliferation in Vitro. Journal of Textile & Apparel/Tekstil ve Konfeksiyon 2017; 27.
  • 24. Yanilmaz M, Dirican M, Zhang X. Evaluation of electrospun SiO 2/nylon 6, 6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochimica Acta, 2014; 133: 501-508.
  • 25. Ryu YJ, Kim HY, Lee KH, Park HC, Lee DR. Transport Properties of Electrospun Nylon 6 Nonwoven Mats. European Polymer Journal 2003; 39: 1883-1889.
  • 26. Maleki H, Gharehaghaji A, Moroni L, Dijkstra PJ. Influence of the Solvent Type on the Morphology and Mechanical Properties of Electrospun PLLA Yarns. Biofabrication, 2013; 5: 035014.
  • 27. Baji A, Mai Y-W, Wong S-C. Effect of Fiber Diameter on the Deformation Behavior of Self-Assembled Carbon. Nanotube Reinforced Electrospun Polyamide 6, 6 Fibers. Materials Science and Engineering: A 2011; 528: 6565-6572.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8375b4d4-4578-4a3d-ad6e-f2859a96fec4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.