PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of the thermal regeneration of loaded hydrophobic and hydrophilic zeolites after adsorption in the liquid phase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy
Języki publikacji
EN
Abstrakty
EN
The paper aims to show a search method for optimal conditions of 3A, 13X, ZSM-5 zeolite thermal regeneration after adsorption from a liquid water-isopropanol mixture. Comparative TGA-DTG results for heating of wet zeolites with different structure and hydrophobicity showed characteristic effects corresponding to the optimal temperature of zeolite regeneration. The consequences of overheating and collapse of the 3A, 13X, ZSM-5 zeolite structure at temperatures of 850, 900, 1000 °C, respectively, were recorded with XRD method. Moreover, XRD and NIR/DRS tests of loaded and regenerated zeolite samples showed interaction of adsorbate and co-adsorbed water with adsorbent and revealed influence of adsorption and regeneration processes on the adsorbent structure. Investigations of the regeneration of the zeolite 3A bed after adsorption of water from the isopropanol solution in the temperature swing adsorption (TSA) process were carried out by heating the bed with inert gas at 250 °C and different purge gas streams in the range of 1.68–2.40 kg/h. Four stages of wet bed regeneration were distinguished, which corresponded to the effect observed during TGA-DTG tests. For each stage, the specific demand for purge gas and energy was determined depending on the gas stream and its minimum value of 2.16 kg/h was indicated.
Rocznik
Strony
art. no. e38
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Inorganic and Analytical Chemistry, Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Ambrożek B., Nastaj J., Gabruś E., 2012. Modeling of adsorptive drying of n-propanol. Drying Technol., 30, 1072–1080. DOI: 10.1080/07373937.2012.684084.
  • 2. Ambrożek B., Nastaj J., Gabruś E., 2013. Modeling and experimental studies of adsorptive dewatering of selected aliphatic alcohols in temperature swing adsorption system. Drying Technol., 31, 1780–1789. DOI: 10.1080/07373937.2013.823442.
  • 3. Ardit M., Martucci A., Cruciani G., 2015. Monoclinic–orthorhombic phase transition in ZSM5 zeolite: spontaneous strain variation and thermodynamic properties. J. Phys. Chem. C,119, 7351–7359. DOI: 10.1021/acs.jpcc.5b00900.
  • 4. Beć K.B., Huck C.W., 2019. Breakthrough potential in near-infrared spectroscopy: Spectra simulation. A review of recent developments. Front. Chem., 7, 48. DOI: 10.3389/fchem.2019.00048.
  • 5. Bonilla-Petriciolet A., Mendoza-Castillo D.I., Reynel-Ávila H.E., 2017. Adsorption processes for water treatment and purification. Springer Cham. DOI: 10.1007/978-3-319-58136-1.
  • 6. Borisova T.N., Gordina N.E., Prokof’ev V.Yu., Afanas’eva E.E., Afineevskii A.V., 2021. Water vapor adsorption/desorption on granulated binder-free low-module zeolites. E3S Web of Conferences, 266, 02007. DOI: 10.1051/e3sconf/202126602007.
  • 7. Borthakur P.C., Chattaraj B.D., 1979. Study of Na-A molecular sieve degeneration by thermal analysis. J. Therm. Anal., 17, 67–72. DOI: 10.1007/BF02156598.
  • 8. Carteret C., 2009. Mid- and near-infrared study of hydroxyl groups at a silica surface: H-bond effect. J. Phys. Chem. C, 113, 13300–13308. DOI: 10.1021/jp9008724.
  • 9. Crittenden B., Thomas W.J., 1998. Adsorption technology and design. Butterworth-Heinemann.
  • 10. Fujiyama S., Seino S., Kamiya N., Nishi K., Yoza K., Yokomori Y., 2014. Adsorption structures of non-aromatic hydrocarbons on silicalite-1 using the single-crystal X-ray diffraction method. Phys. Chem. Chem. Phys., 16, 15839–15845. DOI: 10.1039/ c4cp01860e.
  • 11. Gabruś E., Nastaj J., Tabero P., Aleksandrzak T., 2015. Experimental studies on 3A and 4A zeolite molecular sieves regeneration in TSA process: Aliphatic alcohols dewatering–water desorption. Chem. Eng. J., 259, 232–242. DOI: 10.1016/j.cej.2014.07.108.
  • 12. Gabruś E., Tabero P., Aleksandrzak T., 2022. A study of the thermal regeneration of carbon and zeolite adsorbents after adsorption of 1-hexene vapor. Appl. Therm. Eng., 216, 119065. DOI: 10.1016/j.applthermaleng.2022.119065.
  • 13. Haider M.B., Dwivedi M., Jha D., Kumar R., Sivagnanam B.M., 2021. Azeotropic separation of isopropanol-water using natural hydrophobic deep eutectic solvents. J. Environ. Chem. Eng., 9, 104786. DOI: 10.1016/j.jece.2020.104786.
  • 14. Hoff T.C., Thilakaratne R., Gardner D.W., Brown R.C., Tessonnier J-P., 2016. Thermal stability of aluminum-rich ZSM-5 zeolites and consequences on aromatization reactions. J. Phys. Chem. C, 120, 20103–20113. DOI: 10.1021/acs.jpcc.6b04671.
  • 15. IZA-SC, 2017. Database of zeolite structures. Available at: http://www.iza-structure.org/databases.
  • 16. Joshi S., Fair J.R., 1991. Adsorptive drying of hydrocarbon liquids. Ind. Eng. Chem. Res., 30, 177–185. DOI: 10.1021/ie00049a026.
  • 17. Khoramzadeh E., Mofarahi M., Lee Ch.-H., 2019. Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13X,4A, 5A, and beta. J. Chem. Eng. Data, 64, 5648–5664. DOI: 10.1021/acs.jced.9b00690.
  • 18. Li X., Wang J., Guo Y., Zhu T., Xu W., 2021. Adsorption and desorption characteristics of hydrophobic hierarchical zeolites for the removal of volatile organic compounds. Chem. Eng. J., 411, 128558. DOI: 10.1016/j.cej.2021.128558.
  • 19. Luck W.A.P., 1998. The importance of cooperativity for the properties of liquid water. J. Mol. Struct., 448, 131–142. DOI: 10.1016/S0022-2860(98)00343-3.
  • 20. Luzanova V.D, Rozhmanova N.B., Volgin Y.V, Nesterenko P.N., 2023. The use of zeolite 13X as a stationary phase for direct determination of water in organic solvents by high-performance liquid chromatography, Anal. Chim. Acta, 1239, 340697. DOI: 10.1016/j.aca.2022.340697.
  • 21. Milestone N.B., Bibby D.M., 1984. Adsorption of alcohols from aqueous solution by ZSM-5. J. Chem. Technol. Biotechnol., 34, 73–79. DOI: 10.1002/jctb.5040340205.
  • 22. Nastaj J., Aleksandrzak T., 2013. Adsorption isotherms of water, propan-2-ol, and methylbenzene vapors on grade 03 silica gel,Sorbonorit 4 activated carbon, and HiSiv 3000 zeolite. J. Chem. Eng. Data, 58, 2629-2641. DOI: 10.1021/je400517c.
  • 23. Olson D.H., Haag W.O., Borghard W.S., 2000. Use of water as a probe of zeolitic properties: interaction of water with HZSM-5. Microporous Mesoporous Mater., 35–36, 435–446. DOI: 10.1016/S1387-1811(99)00240-1.
  • 24. Pasti L., Martucci A., Nassi M., Cavazzini A., Alberti A., Bagatin R., 2012. The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites. Microporous Mesoporous Mater., 160, 182–193. DOI: 10.1016/j.micromeso.2012.05.015.
  • 25. Prasakti L., Hartono M., Jati P.P., Setiaji M.F., Wirawan S.K., Sudibyo H, 2020. Problem solving of isopropyl alcohol – water azeotropic characteristics using packed (natural zeolite) bed adsorber. ASEAN J. Sci. Technol. Dev., 37, 21–27. DOI: 10.29037/ajstd.611.
  • 26. Prokof’ev V.Y., Gordina N.E., Borisova T.N., Shamanaeva N.V., 2019. Study of the kinetics of water desorption on binder-free pellets of SOD and LTA zeolites using model-free isoconversion analyzes. Microporous Mesoporous Mater., 280, 116–123. DOI: 10.1016/j.micromeso.2019.01.028.
  • 27. Tomza P., Czarnecki M.A., 2015. Microheterogeneity in binary mixtures of propyl alcohols with water: NIR spectroscopic, twodimensional correlation and multivariate curve resolution study. J. Mol. Liq., 209, 115–120. DOI: 10.1016/j.molliq.2015.05.033.
  • 28. Wang X., Bao Y., Liu G., Li G., Lin L., 2012. Study on the best analysis spectral section of NIR to detect alcohol concentration based on SiPLS. Procedia Eng., 29, 2285–2290. DOI: 10.1016/j.proeng.2012.01.302.
  • 29. Worch E., 2012. Adsorption technology in water treatment: Fundamentals, processes, and modeling. De Gruyter, Berlin, Boston. DOI: 10.1515/9783110240238.
  • 30. Yanagida R.Y., Amaro A.A., Seff K., 1973. Redetermination of the crystal structure of dehydrated zeolite 4A. J. Phys. Chem., 77, 805–809. DOI: 10.1021/j100625a014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83716bd8-1567-4d7c-b19a-c220312b69cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.