PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The demand analysis of oceanic T-S-V 3D reconstruction on wide-swath SSH data features based on ROMS and 4DVAR

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Future wide-swath altimetry missions will provide high-resolution information about ocean surface elevation, and facilitate the characterization of meso- and sub-mesoscale ocean activities. In this study, the demand analysis of three-dimensional (3D) oceanic state reconstruction on wide-swath SSH data features was evaluated using a data assimilation strategy. Three groups of experiments were performed to determine if the wide-swath altimetry observations would improve the three-dimensional (3D) field estimates of ocean temperature-salinity-velocity (T-S-V), and to evaluate how the spatial and temporal resolution and accuracy of the wide-swath altimetry observations affected the ocean state estimation. The Regional Ocean Modeling System and the four-dimensional variational data assimilation method were used in the experiments, with numerical simulation for the Taiwan region at a resolution of 1/10° as the example. The sensitivity of the 3D ocean state construction to the wide-swath altimetry measurements was also investigated. The results showed that the wide-swath sea surface height (SSH) measurements would have an overall positive impact on the 3D T-S-V field and that the positive effect would increase as the resolution and accuracy of the observations increased, but the net benefits would gradually decrease. Among the three examined features of the wide-swath altimetry observations, the temporal resolution had the most influence on the 3D ocean state analysis.
Czasopismo
Rocznik
Strony
309--325
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • China University of Petroleum, College of Oceanography and Space Informatics, Qingdao 266580, China
autor
  • China University of Petroleum, College of Oceanography and Space Informatics, Qingdao 266580, China
  • First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
autor
  • First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
autor
  • Beijing Research Institute of Telemetry, Beijing, China
Bibliografia
  • [1] Amante, C., Eakins, BW., 2009. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA Tech. Memo, 19 NESDIS NGDC-24, 25 pp.
  • [2] Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K., Gombos, D., 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. B. Am. Meteorol. Soc. 92 (2), 157-174.
  • [3] Bell, M. J., Schiller, A., Le Traon, P. Y., Smith, N. R., Dombrowsky, E., Wilmer-Becker, K., 2015. An introduction to GODAE OceanView. J. Oper. Oceanogr. 8 (S1), s2-s11.
  • [4] Bonaduce, A., Benkiran, M., Remy, E., Traon, P. Y. L., Garric, G., 2018. Contribution of future wide-swath altimetry missions to ocean analysis and forecasting. Ocean Sci. 14 (6), 1405-1421.
  • [5] Chaigneau, A., Gizolme, A., Grados, C., 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 79 (2-4), 106-119.
  • [6] Chelton, D. B., Schlax, M. G., Witter, D. L., Richman, J. G., 1990. Geosat altimeter observations of the surface circulation of the Southern Ocean. J. Geophys. Res.-Oceans 95 (C10), 178770-17903.
  • [7] Cooper, M., Haines, K., 1996. Altimetric assimilation with water property conservation. J. Geophys. Res.-Oceans 101 (C1), 1059-1077.
  • [8] De Mey, P., Robinson, A. R., 1987. Assimilation of altimeter eddy fields in a limited-area quasi-geostrophic model. J. Phys. Oceanogr. 17 (12), 2280-2293.
  • [9] Ducet, N., Le Traon, P. Y., Reverdin, G., 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res.-Oceans 105 (C8), 19477-19498.
  • [10] Evensen, G., Van Leeuwen, P. J., 1996. Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Weather Rev. 124 (1), 85-96.
  • [11] Fan, S., Oey, L. Y., Hamilton, P., 2004. Assimilation of drifter and satellite data in a model of the Northeastern Gulf of Mexico. Cont. Shelf Res. 24 (9), 1001-1013.
  • [12] Gaspar, P., Ogor, F., Le Traon, P. Y., Zanife, O. Z., 1994. Estimating the sea state bias of the TOPEX and POSEIDON altimeters from crossover differences. J. Geophys. Res.-Oceans 99 (C12), 24981-24994.
  • [13] Gaultier, L., Ubelmann, C., Fu, L. L., 2016. The challenge of using future SWOT data for oceanic field reconstruction. J. Atmos. Ocean. Tech. 33 (1), 119-126.
  • [14] Hwang, P. A., Teague, W. J., Jacobs, G. A., Wang, D. W., 1998. A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. J. Geophys. Res.-Oceans 103 (C5), 10451-10468.
  • [15] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowika, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. B. Am. Meteorol. Soc 77 (3), 437-472.
  • [16] Killworth, P. D., Dieterich, C., Le Provost, C., Oschlies, A., Willebrand, J., 2001. Assimilation of altimetric data and mean sea surface height into an eddy-permitting model of the North Atlantic. Prog. Oceanogr. 48 (2-3), 313-335.
  • [17] Klein, P., Morrow, R., Samelson, R., Chelton, D., Lapeyre, G., Fu, L., Qiu, B., Ubelmann, C., Traon, P. L., Capet, X., Ponte, A., Sasaki, H., d’Ovidio, F., Farrar, T., Chapron, B., D’Asaro, E., Ferrari, R., McWilliams, J., Smith, S., Thompson, A., 2015. Mesoscale/sub-mesoscale dynamics in the upper ocean. NASA Surface Water and Ocean Topography (SWOT), http://www.aviso.altimetry.fr/fileadmin/documents/missions/Swot/WhitePaperSWOTSubmesoscale.pdf.
  • [18] Koblinsky, C., Caspar, P., Lagerloef, G., 1992. Oceans and climate change: The future of spaceborne altimetry. EOS-T. Am. Geophys. Un. 73 (38) 403-403.
  • [19] Korotaev, G., Oguz, T., Nikiforov, A., Koblinsky, C., 2003. Seasonal, interannual, and mesoscale variability of the Black Sea upper layer circulation derived from altimeter data. J. Geophys. Res.-Oceans 108 (C4), 16 pp.
  • [20] Kurapov, A. L., Foley, D., Strub, P. T., Egbert, G. D., Allen, J. S., 2011. Variational assimilation of satellite observations in a coastal ocean model off Oregon. J. Geophys. Res.-Oceans 116 (C5), 19 pp.
  • [21] Le Traon, P. Y., Rouquet, M. C., Boissier, C., 1990. Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data. J. Geophys. Res.-Oceans 95 (C11), 20267-20285.
  • [22] Le Traon, P. Y., Dibarboure, G., Jacobs, G., Martin, M., Rémy, E., Schiller, A., 2017. Use of satellite altimetry for operational oceanography. In: Stammer, D., Cazenave, A. (Eds.), Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, 581-608.
  • [23] Martin, M. J., Hines, A., Bell, M. J., 2007. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact. Q. J. Roy. Meteoro. Soc. 133 (625), 981-995.
  • [24] Martin-Neira, M., Mavrocordatos, C., Colzi, E., 1998. Study of a constellation of bistatic radar altimeters for mesoscale ocean applications. IEEE T. Geosci. Remote 36 (6), 1898-1904.
  • [25] Matsumoto, K., Takanezawa, T., Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr. 56 (5), 567-581.
  • [26] Mellor, G. L., Yamada, T., 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20 (4), 851-875.
  • [27] Mellor, G. L., Ezer, T., 1991. A Gulf Stream model and an altimetry assimilation scheme. J. Geophys. Res./-Oceans 96 (C5), 8779-8795.
  • [28] Miller, L., Cheney, R. E., Douglas, B. C., 1988. GEOSAT altimeter observations of Kelvin waves and the 1986-87 El Nino. Science 239 (4835), 52-54.
  • [29] Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B., Foley, D., Doyle, J. D., Costa, D., Robinson, P., 2011. The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: part II — performance and application to the California Current System. Prog. Oceanogr. 91 (1), 50-73.
  • [30] Morrow, R., Birol, F., 1998. Variability in the southeast Indian Ocean from altimetry: Forcing mechanisms for the Leeuwin Current. J. Geophys. Res.-Oceans 103 (C9), 18529-18544.
  • [31] Nerem, R. S., Tapley, B. D., Shum, C. K., 1990. Determination of the ocean circulation using Geosat altimetry. J. Geophys. Res.-Oceans 95 (C3), 3163-3179.
  • [32] Penduff, T., Brasseur, P., Testut, C. E., Barnier, B., Verron, J., 2002. A four-year eddy-permitting assimilation of sea-surface temperature and altimetric data in the South Atlantic Ocean. J. Mar. Res. 60 (6), 805-833.
  • [33] Piecuch, C. G., Ponte, R. M., 2011. Mechanisms of interannual steric sea level variability. Geophys. Res. Lett. 38 (15), 6 art. no. L15605, 6 pp.
  • [34] Powell, B. S., Arango, H. G., Moore, A. M., Di Lorenzo, E., Milliff, R. F., Foley, D., 2008. 4DVAR data assimilation in the intra-Americas sea with the Regional Ocean Modeling System (ROMS). Ocean Model 23 (3-4), 130-145.
  • [35] Pujol, M. I., Dibarboure, G., Le Traon, P. Y., Klein, P., 2012. Using high-resolution altimetry to observe mesoscale signals. J. Atmos. Ocean. Tech. 29 (9), 1409-1416.
  • [36] Qiu, B., Chen, S., 2005. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr. 35 (11), 2090-2103.
  • [37] Shchepetkin, A. F., McWilliams, J. C., 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9 (4), 347-404.
  • [38] Soto-Mardones, L., Parés-Sierra, A., Garcia, J., Durazo, R., Hormazabal, S., 2004. Analysis of the mesoscale structure in the IMECOCAL region (off Baja California) from hydrographic, ADCP and altimetry data. Deep Sea Res. Pt. II 51 (6-9), 785-798.
  • [39] Strub, P. T., James, C., 2002. Altimeter-derived surface circulation in the large-scale NE Pacific Gyres.: Part 1. Seasonal variability. Prog. Oceanogr. 53 (2-4), 163-183.
  • [40] Tandeo, P., Chapron, B., Ba, S., Autret, E., Fablet, R., 2014. Segmentation of mesoscale ocean surface dynamics using satellite SST and SSH observations. IEEE T. Geosci. Remote 52 (7), 4227-4235.
  • [41] Traon, L. P., 1991. Time scales of mesoscale variability and their relationship with space scales in the North Atlantic. J. Mar. Res. 49 (3), 467-492.
  • [42] Vélez-Belchí, P., Centurioni, L. R., Lee, D. K., Jan, S., Niiler, P. P., 2013. Eddy induced Kuroshio intrusions onto the continental shelf of the East China Sea. J. Mar. Res. 71 (1-2), 83-107.
  • [43] Wang, G., Su, J., Chu, P. C., 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett. 30 (21) 6-1-6-4.
  • [44] Wang, X., Liu, P. L. F., 2006. An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. J. Hydraul. Res. 44 (2), 147-154.
  • [45] Zhou, C., Ding, X., Zhang, J., Yang, J., Ma, Q., 2018. An evaluation of sea surface height assimilation using along-track and gridded products based on the Regional Ocean Modeling System (ROMS) and the four-dimensional variational data assimilation. Acta Oceanol. Sin. 37 (9), 50-58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-836e6a2d-ffcf-4c90-a5fe-a465f7faddd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.