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Abstract: An approach to power system state estimation using a particle filter has been 
proposed in the paper. Two problems have been taken into account during research, 
namely bad measurements data and a network structure modification with rapid changes 
of the state variables. For each case the modification of the algorithm has been proposed. 
It has also been observed that anti-zero bias modification has a very positive influence on 
the obtained results (few orders of magnitude, in comparison to the standard particle 
filter), and additional calculations are quite symbolic. In the second problem, used 
modification also improved estimation quality of the state variables. The obtained results 
have been compared to the extended Kalman filter method. 
Key words: bad data, branch disconnection measurement errors, particle filter, power 
system, state estimation  

 
 
 

1. Introduction 
 
 The current problem on the borderline between automation and electrical engineering is 
the Power System State Estimation (PSSE). The information obtained by the estimation are 
used for other calculations (e.g. a control [1] or an optimal power flow [2, 3]). Therefore, the 
estimation is an important step, because the use of the erroneous estimation in subsequent 
calculations will also return incorrect results. 
 The most commonly used method for this task is the Weighted Least Squares (WLS), 
however, it has been proposed nearly 50 years ago by Schweppe and Rom in [4]. One can find 
a modification of this method in the literature, i.e., Extended WLS (EWLS) [5]. The results 
obtained by the authors suggest that the use of EWLS slightly increases the estimation quality. 

Brought to you by | Biblioteka Glówna Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie
Authenticated

Download Date | 2/2/16 1:19 PM



                                           P. Kozierski, M. Lis, A. Owczarkowski, D. Horla                          Arch. Elect. Eng. 

 

238 

 The dynamic estimation methods, i.e. the methods which utilize the history of the state 
variables (the history is usually limited to the previous state) are alternatives. Such methods 
include Extended Kalman Filter (EKF) [6], Unscented Kalman Filter (UKF) [7], and also 
Particle Filter (PF). 
 The authors of this article are interested in PF methods for PSSE problem solution  
([8-10]). This article is focused on the two issues that may occur in the power system, i.e. 
large measurement errors and line disconnection – the modifications of PF method to the both 
problems have been proposed. 
 In the second Section, PF principle of operation has been described. The third Section is 
devoted to the power system used in the simulations. In the next Section, PF modifications 
have been presented. In the fifth Section, the performed simulations and the obtained results 
have been described. Conclusions and summary of the article have been presented in the last 
Section. 
 
 

2. Particle filter 
 
 PF principle of operation is based on the Bayes filtering, with the Bayes rule described by 
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where p(·|·) is a conditional probability, whereas X(k) and Y(k) are, in general, random variables 
(in this case X(k) is a set of state vectors from first to the k-th time step and Y(k) is a set of 
measurement vectors from first to the k-th time step).  
 Assuming the use of the marginalized posterior Probability Density Function (PDF), in-
stead of the joint posterior PDF, one can write the same as in (1) [11] 
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where x(k) is a vector of the state variables in the k-th time step, Y(k) is a set of the measure-
ments vectors, from first to the k-th time step Y(k)={y(1), y(2), ..., y(k)}. 
 Based on the basic concepts in probability, i.e. [12] 
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Bayes rule, which results from above expressions 
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and also on 
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one can obtain expression of the Bayes filtering, i.e. 
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assuming that the object is a first order Hidden Markov Model (HMM). An interested reader 
can find full derivation in literature, e.g. [13, 14]. 
 PF is one of the possible Bayes filter implementations. There has been made an assump-
tion that the posterior PDF is composed of particles. The i-th particle has a certain value xi and 
the weight qi. Greater weight qi affects on greater probability that xi is a correct value. When 
the number of particles N tends to the infinity, one can write that 
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where δD(·) is a Dirac delta. 
 Particle filtering is one of the three main Sequential Monte Carlo (SMC) method types, in 
which PDF p(x(k)|Y(k)) is calculated. Two other variants are a smoothing p(x(k)|Y(k+n)) and  
a prediction p(x(k+n)|Y(k)), where n is a natural number [15]. 
 The first particle filter was proposed by Gordon, Salmond and Smith in 1993 and has been 
called the Bootstrap Filter [16]. Operation principle of PF has been presented below. 

 Algorithm 1: Bootstrap filter 
 1) Initialization. Draw N particles from the initial PDF xi,(0)~p(x(0)), set the time step 

value k = 1. 
2) Prediction. Draw N new particles from the transition model xi,(k)~p(x(k)|xi,(k-1)). 
3)  Update. Calculate particle weights based on measurement model qi,(k) = p(y(k)|xi,(k)). 
4) Normalization. Normalize weights so that their sum be equal to 1. 
5) Resampling. Draw N new particles based on the posterior PDF, obtained in previous 

steps. 
6) Calculate an estimated value, increase the time step k = k + 1, go to the second step. 

 A general form of PF is the Sequential Importance Resampling (SIR) algorithm, which has 
been described below. 
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 Algorithm 2: Sequential importance resampling 
  1) Initialization. Draw N particles from the initial PDF xi,(0)~p(x(0)), set the time step 

value k = 1. 
2) Prediction. Draw N new particles from the importance density xi,(k)~g(x(k)|xi,(k-1), y(k)). 
3) Update. Calculate particle weights based on the measurement model, the transition 

model and the importance density  
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4) Normalization. Normalize weights so that their sum be equal to 1. 
5) Check condition for a resampling execution – if it is not met, go to the 7th step. 
6) Resampling. Draw N new particles based on the posterior PDF, obtained in the previ-

ous steps; set the new weights values equal to 1/N. 
7) Calculate an estimated value, increase the time step k = k + 1, go to the second step. 

 The importance density, which has been used in steps 2 and 3 of the Algorithm 2, is an 
arbitrary function, which can be dependent on the measurement values (what is not obliga-
tory). This should be used, when the values can be easily calculated from the transition model 
p(x(k)|xi,(k-1)), but there are difficulties in drawing from this PDF. This can also be applied when 
any additional information are known, which can allow for narrow the consecutive draws.  
 As one can see, there may be many different types of PF, e.g., Auxiliary PF [17], Marginal 
PF [18], Gaussian PF [19]. One can also find algorithms, which combine two different me-
thods, e.g. Extended Kalman PF [20], Unscented PF [21], Hybrid Kalman PF [22] or Iterated 
Extended Kalman PF [23]. 
 These PF variations mainly relate to the steps 2 and 3 in the Algorithm 2. Whereas the 
element that appears in every PF is resampling. In this article, the systematic resampling has 
been used for simulations. 

 Algorithm 3: Systematic resampling 
1) Initialization. Set value j = 1 and sum of weights S = q1,(k), generate a one random 

value u ~ U[0,1/N). 
2) Steps 3-5 perform for i = 1 ... N. 
3) While S < u do j = j + 1 and S = S + q j,(k). 
4) Choose value x j,(k) for replication. 
5) Calculate u = u + 1/N. 

 There are also many other types of resampling steps. Interested readers are recommended 
to study the contents of the publication [24] where more than 20 different types of resampling 
have been described. 
 As one can easily see, most of the required in PF calculations can be performed simulta-
neously. For this reason, one can find proposals for PF implementation on GPU [25] or on 
FPGA [26] in the literature. This is important, because only with a parallel implementation PF 
can compete in terms of the execution time with other estimation methods.  
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 For readers interested in the particle filtering subject, references [27] and [14] are recom-
mended. 
 
 

3. Power system 
 
 An object, which has been chosen (power system) is a multidimensional nonlinear system. 
It consists of nodes (buses) and lines (branches) which connect the nodes. A π quadripole has 
been selected as the line model (see Fig. 1), 
 

 
Fig. 1. Branch model in power system 

 
where y'ij/2 is a half total line charging susceptance [28], and yij is a line admittance calculated 
from 
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where Rij is a resistance and Xij is a reactance. 
 Based on the line parameters, the admittance matrix Y, which is required for subsequent 
calculations, is created. The diagonal values are calculated based on expression 
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and the remaining matrix values, based on the equation 

  .jiyY
ijij ≠−=  (13) 

 Elements of Y matrix can represented in exponential notation 

  ( ).jexp jijiji YY μ⋅=  (14) 

 The power system is composed of B buses and L branches. The unequivocal network state 
can be determined by phasors in all nodes, where each phasor can be represented by the 
voltage magnitude U and phase angle δ. However, a reference node is needed, wherein the 
phase value will be a constant (usually equal to 0). Based on the latter, one can conclude that 
the power system consisting of B nodes is a multidimensional object with 2B-1 state variables 
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In (15) it is assumed that the first node is reference.  
5 measurement types have been specified in the power system, i.e. a voltage magnitude and  
4 types of power: 
  $ active (P) and reactive (Q) power injections 
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  $ active and reactive power flows 
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 The 5-nodal power system has been selected for simulations, the same as in [29]. The 
assumption has been made that the all possible measurements are performed (i.e. 24 power 
flows, 10 power injections and 5 voltage magnitudes – total 39 measurements). In the case 
with bad data, five of the measurements were completely wrong. Errors which have been 
assumed are: 
  $ the measured value is continuously the same, significantly overstated, 
  $ the measured value has the opposite sign, 
  $ the measured value is biased by constant value, 
  $ the measured value always is equal to 0. 
 In the case with the line disconnection, all measurements were correct, however line 1-5 
was disconnected in the half of the simulation. 
 In the Figure 2 scheme of the power system, with marked places of the erroneous measure-
ments, has been presented. In the Figure 3 one can see the explanation of the used designations. 
 

 
Fig. 2. Scheme of the power system. The bad measurements for first case are marked as grey elements. 

The disconnected line for second case is marked by dotted line 
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Fig. 3. The explanation of the designations in the Figure 2 

 
 The power system has been modelled as a first order Hidden Markov Model (HMM) 

  ( ) ( ) ( ) ,1 kkk vxx +=+  (20) 

  ( ) ( )( ) ( ) ,kkk nxhy +=  (21) 

where v and n are vectors of, respectively, a system noise and a measurement noise (both have 
been taken as the Gaussian noise), and h(·) is a vector of measurement functions (expressions 
(16-19) or the voltage magnitude). 
 For more information about power system, the books [29] and [30] are recommended. 
 
 

4. Proposed modifications 
4.1. Anti-zero bias 
 This modification is concentrated on the update step in PF method (step 3 in the Algo 
rithm 1). The measurement model p(y(k)|xi,(k)) determines what is the probability that with the 
given measurement values y(k), the state vector is equal to xi,(k). In practice, this operation is 
distributed into simpler calculations, i.e. 
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where m is a number of all measurements (size of y(k) vector). To illustrate the problem, the 
situation for continuous PDF has been shown in the Figure 4 (in the expression (22) it is the 
same, but in a one point, i.e. for xi,(k)). 
 

 
Fig. 4. Probability density functions and their product. The case with correct measurements 
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 In the case with bad measurement data, the expected value of the PDF product will signifi-
cantly change (see Fig. 5, the solid line). Additionally, for some xi,(k) vectors the value of ex-
pression (22) may be equal to the zero. It is possible in the case where bad measurements 
would result in a lower value of probability than the minimum value in the floating-point 
system. 
 The modification of the likelihood calculation from the measurement model has been pro-
posed to prevent this problem: 

  ( ) ( )( ) ( )
( ) ( )( )( ) ( )

( ) ( )( )( ),||| 0
,

0
,

1
, bypbypp kik

m
kikkik +⋅⋅+= xxxy K  (23) 

where b0 is the anti-zero bias. 
 The use of the anti-zero bias prevents resetting a likelihood to zero and causes that bad 
measurement data have a negligible effect on the calculated expected value of PDF (see Fig. 5, 
the dashed line). 

 
Fig. 5. Probability density functions and their product. The case with bad measurement 

 
4.2. Modification during line disconnection 
 The nature of changes of the state variables in successive iterations is described by the 
transition model p(x(k)|xi,(k-1)). In the case where a factual change of the state variable is much 
greater than based on the transition model, the correct estimation is not possible.  
 On the other hand, the assumption that the variance in the transition model is greater, is 
inefficient if everything works properly. 
 In the case of detection of the line disconnection, the increasing of the variance in the tran-
sition model would help, however, it is not known how much this variance should be increased. 
 Therefore, the modification of Algorithm 1 has been proposed, which should be used only 
in the case of the line disconnection. The modification depends only on the last step of the PF 
algorithm. 

 Algorithm 4: Bootstrap Filter modification for the line disconnection 
6) Calculate an estimated value. If the huge error in the estimation is not detected, in-

crease the time step k = k + 1. Go to the second step. 

 As one can see, during one time step k, the calculations can be performed few times. 
 The line disconnection (and more generally – the change of the state variables greater than 
this is possible with a chosen transition model) can be easily checked by comparing the un-
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normalized weights (step 3 in the Algorithm 1). In the performed simulations, the maximum 
weight value decreased by more than 50 orders of magnitude, after the disconnection. 
 The condition in the Algorithm 4 can take a several different forms, e.g. an iteration can be 
repeated until a maximum unnormalized weight reaches a certain threshold value. One can 
also set up a number of iteration repetitions. In this article the authors assumed that the 
iteration is repeated as long as the increase of the maximum unnormalized weight is “signi-
ficant” (greater than 5 orders of magnitude – it has been considered as the huge error in the 
Algorithm 4). When the maximum unnormalized weight returns to an earlier level, the modi-
fication is disabled. 
 The additional assumption has been made that since the modification is enabled, the 
standard deviation in the transition model is 3 times higher. 
 
 

5. Obtained results 
 
 Simulations have been performed for the power system presented in the Figure 2 for the 
same set of data, with length of M = 100 time steps. 
 For a small number of particles N ≤ 10,000 simulations have been repeated 1,000 times. 
For N ≤ 100,000, 100 simulations have been performed, and 10 simulations in other cases. 
 The estimation quality has been described by the indicator D, which contains information 
about the mean square errors (MSE) of the all state variables. It can be written as 

  ( ) ,10
12

1

26 ∑
−

=

⋅=
B

i
iMSED  (24) 

where B is a number of buses in the power system. Coefficient 106 has been used for obtaining 
„pleasing to the eye” results. 
 
5.1. Results for bad data measurements (anti-zero bias) 
 Value of the anti-zero bias has been chosen to be b0 = 10!6. The simulation results have 
been presented in the Figure 6. 
 

 
Fig. 6. Simulation results for case with bad data measurements 
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 Results presented in the chart concern only on the PF method with the anti-zero bias. It is 
because without this modification results were about 5 orders of magnitude higher. The situa-
tion with the EKF method results were similar. In the case of all (including wrong) measure-
ments, the value D = 552 has been obtained. 
 
5.2. Results for line disconnection 
 The line disconnection in the k = 51 time step has been assumed. However, an effect of  
a network structure alteration is not only visible in the power flows and the state variables in 
buses, but also in the parameters that have not been taken into account. One of the problems is 
the active power balance, which affects the frequency in the power system. 
 In the prepared simulation the simplified approach has been used. This is justified, because 
the most important effect (the rapid change in values of the state variables) has been achieved. 
After the branch disconnection the estimated state vector values have been calculated using 
the Weighted Least Squares (WLS) method, assuming that the power injections can not 
change rapidly. Obtained in this way state vector has been considered as genuine. 
 As a result of these calculations, a significant increase of the voltage occurred in the power 
system, and in the next few steps it has been reduced. The remainder part of the simulation (to 
k = 100) has been held without significant changes. In such a way, the waveforms without 
noise have been created. 
 The effects (a chart of the state variables) are shown in the Figure 7. 
 The simulation results have been presented in the Figure 8. 

 
Fig. 7. Plot of the state variables U2 (above) and δ2 (below) – the values without noises 

 
Fig. 8. Simulation results for the case with the branch disconnection 
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6. Conclusions 
 
 Based on the performed simulations one can say that thanks to the anti-zero bias PF can be 
used for cases in which bad measurements data may occur. The modification does not affect 
the computation time, and the obtained results are little worse than in the case without bad 
measurements. 
 PF algorithm with the anti-zero bias has a higher performance in the comparison to the 
EKF method. Only assuming that a detection of bad data measurements in EKF is imple-
mented, this method is competitive. However, it should be noted that some errors may be 
higher than assumed in the algorithm and small enough to be unnoticed. In such cases, the 
versatility of PF method is undoubted advantage. 
 The second proposed modification has a noticeable effect on the obtained results (almost 
10-times smaller D value – see Fig. 8). In the comparison to the EKF method, the standard PF 
algorithm is far worse. Whereas the modificated PF method gives better results already for 
about N = 200 particles. 
 It should be noted that the characteristics of the state variables may look very different for 
disconnections of various lines, as well as for a different state of the power system. Despite 
this, the obtained results are satisfactory, because it has been shown that the approach, which 
allows to track rapid changes of the state variables, is possible. However, this issue requires 
further study in the future. 
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