PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of the algorithm for calculating fatigue life for the criteria based on the concept of the critical plane

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to propose an algorithm for fatigue life determination with the use of widely-known criteria for the fatigue life considering proper determination of material characteristics, which are a function of the number of cycles to failure. The application of the modified algorithm has been presented within the criteria of Findley, Matake, Papadopoulos and Dang Van, and the results of calculations have been compared with test results for steels S355J2G3 and Ck45. For both materials analysed, the application of the modified algorithm in the fatigue criteria makes it possible to obtain much more precise results of the calculations for all types of the loading analysed.
Słowa kluczowe
Rocznik
Strony
191--201
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Opole University of Technology, Department of Mechanics and Machine Design, Opole, Poland
autor
  • Opole University of Technology, Department of Mechanics and Machine Design, Opole, Poland
Bibliografia
  • 1. ASTM E1049 - 85(2011)e1, 2003, Standard Practices for Cycle Counting in Fatigue Analysis, ASTM International, West Conshohocken, PA
  • 2. Carpinteri A., Spagnoli A., Vantadori S., Bagni C., 2013, Structural integrity assessment of metallic components under multiaxial fatigue: the C-S criterion and its evolution, Fatigue and Fracture of Engineering Materials and Structures, 36, 9, 870-883
  • 3. Dang Van K., 1983, Macro-micro approach in high-cycle multiaxial fatigue, American Society for Testing and Materials STP 1191, 120-130
  • 4. Dang Van K., Cailletaud G., Flavenot J.F., Le Douaron A., Lieurade H.P., 1989, Criterion for high cycle fatigue failure under multiaxial loading, Mechanical Engineering Publications, London, 459-478
  • 5. Findley W.N., Coleman J.J., Hanley B.C., 1956. Theory for combined bending and torsion fatigue with data for SAE 4340 steel, International Conference on Fatigue of Metals, London
  • 6. Karolczuk A., Kluger K., 2014, Analysis of the coefficient of normal stress effect in chosen multiaxial fatigue criteria, Theoretical and Applied Fracture Mechanics, 73, 39-47
  • 7. Karolczuk A., Kluger K., Łagoda T., 2016, A correction in the algorithm of fatigue life calculation based on the critical plane approach, International Journal of Fatigue, 83, 174-183
  • 8. Karolczuk A., Macha E., 2005a, Critical planes in multiaxial fatigue, [In:] Materials Structure and Micromechanics of Fracture, J. Pokluda (Edit.), Zurich-Uetikon: Trans Tech Publications Ltd, 109-114
  • 9. Karolczuk A., Macha E., 2005b. Fatigue fracture planes and expected principal stress directions under biaxial variable amplitude loading, Fatigue Fracture of Engineering Materials and Structures, 28, 1/2, 99-106
  • 10. Kluger K., 2015, Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress, International Journal of Fatigue, 80, 22-29
  • 11. Kluger K., Łagoda T., 2014, New energy model for fatigue life determination under multiaxial loading with different mean values, International Journal of Fatigue, 66, 229-245
  • 12. Kurek M., Łagoda T., 2012, Estimation of fatigue life of materials with out-of-parallel fatigue characteristics under block loading, Materials Science Forum, 726, 181-188
  • 13. Matake T., 1977, An explanation on fatigue limit under combined stress, Bulletin of the JSME, 20, 141, 257-263
  • 14. Papadopoulos I.V., 1994, A new criterion of fatigue-strength for out-of-phase bending and torsion, International Journal of Fatigue, 16, 6, 377-384
  • 15. Papadopoulos I.V., 1998, Critical plane approaches in high-cycle fatigue: on the definition of the amplitude and mean value of the shear stress acting on the critical plane, Fatigue and Fracture of Engineering Materials and Structures, 21, 3, 269-285
  • 16. Papuga J., 2011, A survey on evaluating the fatigue limit under multiaxial loading, International Journal of Fatigue, 33, 2, 153-165
  • 17. Pawliczek R., Prażmowski M., 2015, Study on material property changes of mild steel S355 caused by block loads with varying mean stress, International Journal of Fatigue, 80, 171-177
  • 18. Simburger A. , 1975, Festigkeitsverhalten zaher Werkstoffe bei einer mehrachsigen phasenverschobenen Schwingbeanspruchung mit k¨orperfesten und ver¨anderlichen Hauptspannungsrichtun-gen. LBF Darmstadt – Bericht Nr FB-1975.
  • 19. Skibicki D., 2007, Experimental verification of fatigue loading nonproportionality model, Journal of Theoretical and Applied Mechanics, 45, 2, 337-348
  • 20. Skibicki D., Pejkowski L., 2012, Integral fatigue criteria evaluation for life estimation under uniaxial combined proportional and non-proportional loadings, Journal of Theoretical and Applied Mechanics, 50, 4, 1073-1086
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8369bba5-f815-4088-a68e-881aa4c24915
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.