PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the Implemented Detonation Velocity Predictions in the Research Output Software for Energetic Materials Based on Observational Modelling (RoseBoom©) with 30 Experimental Values

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
So far, the accuracy of the new Computer Software RoseBoom© has only been determined by comparing it to the Program EXPLO5. In the present study RoseBoom©’s predictions are compared with 30 experimental detonation velocities, in order to evaluate which of the computer codes is more accurate.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
Twórcy
  • Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
  • RoseExplosive UG (haftungsbeschränkt), Munich, Germany
  • Department of Chemistry, Energetic Materials Research, Ludwig-Maximilian University of Munich, 81377 Munich, Germany
Bibliografia
  • [1] Sućeska, M. EXPLO5 ‒ Computer Program for Calculation of Detonation Parameters. Proc. 32nd Int. Annual Conf. ICT, Karlsruhe, Germany, 2001, 110: 1-13.
  • [2] Keshavarz, M.H.; Klapötke, T.M.; Sućeska, M. Energetic Materials Designing Bench (EMDB), Version 1.0. Propellants Explos. Pyrotech. 2017, 42(8): 854-856; DOI: 10.1002/prep.201700144.
  • [3] Website https://www.roseexplosive.com/ [accessed 25.01.2023].
  • [4] Wahler, S.; Klapötke, T.M. Research Output Software for Energetic Materials Based on Observational Modelling (RoseBoom2.0). Proc. 24th New Trends Res. Energ. Mater., Pardubice, Czech Republic, 2022, 110-113.
  • [5] Wahler, S.; Klapötke, T.M. Research Output Software for Energetic Materials Based on Observational Modelling 2.1 (RoseBoom2.1©). Mater. Adv. 2022, 3:7976-7986; DOI: 10.1039/d2ma00502f.
  • [6] Klapötke, T.M.; Wahler, S. Research Output Software for Energetic Materials Based on Observational Modelling 2.2 (RoseBoom2.2©) – Update to Calculate the Specific Impulse, Detonation Velocity, Detonation Pressure and Density for CHNO Mixtures Using the Supersloth-function. Cent. Eur. J. Energ. Mater. 2022, 19(3): 295-310; DOI: 10.22211/cejem/155004.
  • [7] Meyer, R.; Köhler, J.; Homburg, A. Explosives. Wiley-VCH &Co. KGaA, Weinheim, Germany, 2007; ISBN: 978-3-527-31656-4.
  • [8] Keshavarz, M.H.; Pouretedal, H.R. Predicting Detonation Velocity of Ideal and Less Ideal Explosives via Specific Impulse. Indian J. Eng. Mater. Sci. 2004, 11: 429-432.
  • [9] Rothstein, L.R. Predicting High Explosive Detonation Velocities from Their Composition and Structure (II). Propellants Explos. Pyrotech. 1981, 6(4): 91-93; DOI: 10.1002/prep.19810060402.
  • [10] Kamlet, M.J.; Jacobs, S.J. Chemistry of Detonations. I. A Simple Method for Calculating Detonation Properties of C–H–N–O Explosives. J. Chem. Phys. 1968, 48: 23-35.
  • [11] Stine, J.R. On Predicting Properties of Explosives ‒ Detonation Velocity. J. Energ. Mater. 1990, 8(1/2): 41-73; DOI: 10.1080/07370659008017245.
  • [12] Klapötke, T.M.; Cudziło, S.; Trzciński, W.A. An Answer to the Question about the Energetic Performance of TKX-50. Propellants Explos. Pyrotech. 2022, 47(6) paper e202100358; DOI: 10.1002/prep.202100358.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8368b476-14fa-44b2-bfbe-fbe1b27cc5a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.