Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An embedded microring resonator model using PtS2 as the core layer was designed and optimized for sensing. The inner layer is made of PtS2, and SiO2 and Si3N4 are used as cladding. The overall structure is Si3N4-SiO2-PtS2-SiO2-Si3N4. Field strength distribution of longitudinal section of single straight waveguide and the longitudinal section of coupling part of straight and annular waveguides are simulated according to the coupled-mode theory. The transfer matrix method is used to analyze characteristics between the length of the U-shaped feedback waveguide and the circumference of microring and the change of attenuation factor and coupling coefficient on the output spectrum. The simulation results showed that the embedded microring resonator with PtS2 as the core presents excellent optical properties. The resonance depth is more than –50 dB, and the sensitivity can reach 1806.61 dB/RIU. When the resonance wavelength is 1550.86 nm and the self-coupling coefficient is 0.9849. The corresponding detection limit is about 1.66056×10–7 dB/RIU, and the quality factor is 2.8848×10–5 under the measurement system with a signal-to-noise ratio of 30 dB. Compared with the traditional single microring structure, the proposed microring presents a higher free spectral range and more suitable for the fabrication of high-sensitivity, low-detection limit, and large-measurement range sensors.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
213--226
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- School of Mathematics and Information Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
autor
- School of Mathematics and Information Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
autor
- School of Mathematics and Information Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
autor
- School of Mathematics and Information Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
autor
- School of Mathematics and Information Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
autor
- School of Mathematics and Information Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
Bibliografia
- [1] BAO W., CAI X., KIM D., SRIDHARA K., FUHRER M.S., High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects, Applied Physics Letters 102(4), 2013: 042104. https://doi.org/10.1063/1.4789365
- [2] ROHAIZAD N., MAYORGA-MARTINEZ C.C., SOFER Z., WEBSTER R.D., PUMERA M., Layered platinum dichalcogenides (PtS2, PtSe2, PtTe2) for non-enzymatic electrochemical sensor, Applied Materials Today 19, 2020: 100606. https://doi.org/10.1016/j.apmt.2020.100606
- [3] GUO G.Y., LIANG W.Y., The electronic structures of platinum dichalcogenides: PtS2, PtSe2 and PtTe2, Journal of Physics C: Solid State Physics 19(7), 1986: 995-1008. https://doi.org/10.1088/0022-3719/19/7/011
- [4] SAJJAD M., MONTES E., SINGH N., SCHWINGENSCHLÖGL U., Superior gas sensing properties of monolayer PtSe2, Advanced Materials Interfaces 4(5), 2017: 1600911. https://doi.org/10.1002/admi.201600911
- [5] ZHAO Y., QIAO J., YU Z., YU P., XU K., LAU S.P., ZHOU W., LIU Z., WANG X., JI W., CHAI Y., High-electron-mobility and air-stable 2D layered PtSe2 FETs, Advanced Materials 29(5), 2017: 1604230. https://doi.org/10.1002/adma.201604230
- [6] YUAN J., MU H., LI L., CHEN Y., YU W., ZHANG K., SUN B., LIN S., LI S., BAO Q., Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers, ACS Applied Materials and Interfaces 10(25), 2018: 21534-21540. https://doi.org/10.1021/acsami.8b03045
- [7] ERMOLAEV G., VORONIN K., BARANOV D.G., KRAVETS V., TSELIKOV G., STEBUNOV Y., YAKUBOVSKY D., NOVIKOV S., VYSHNEVYY A., MAZITOV A., KRUGLOV I., ZHUKOV S., ROMANOV R., MARKEEV A.M., ARSENIN A., NOVOSELOV K.S., GRIGORENKO A.N., VOLKOV V., Topological phase singularities in atomically thin high-refractive-index materials, Nature Communications 13, 2022: 2049. https://doi.org/10.1038/s41467-022-29716-4
- [8] LI T., DONG H., HAO Y., ZHANG Y., CHEN S., XU M., ZHOU Y., Near‐infrared responsive photoelectrochemical biosensors, Electroanalysis 34(6), 2021: 956-965. https://doi.org/10.1002/elan.202100355
- [9] YIM C., LEE K., MCEVOY N., O’BRIEN M., RIAZIMEHR S., BERNER N.C., CULLEN C.P., KOTAKOSKI J., MEYER J.C., LEMME M.C., DUESBERG G.S., High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature, ACS Nano 10(10), 2016: 9550-9558. https://doi.org/10.1021/acsnano.6b04898
- [10] ANTONACCI G., ELSAYAD K., POLLI D., On-chip notch filter on a silicon nitride ring resonator for Brillouin spectroscopy, ACS Photonics 9(3), 2022: 772-777. https://doi.org/10.1021/acsphotonics.2c00005
- [11] YANG F., ZHANG W., JIANG Y., TAO J., HE Z., Highly sensitive integrated photonic sensor and interrogator using cascaded silicon microring resonators, Journal of Lightwave Technology 40(9), 2022: 3055-3061. https://doi.org/10.1109/JLT.2022.3145501
- [12] DEHGHANI F., ABDOLLAHI M., MOHAMMADI S., BAREKATAIN B., HDMS: high-performance dual-shaped microring-resonator-based optical switch, Optical Engineering 61(3), 2022: 035105. https://doi.org/10.1117/1.OE.61.3.035105
- [13] JIN M., WEI Z., MENG Y., SHU H., TAO Y., BAI B., WANG X., Silicon-based graphene electro-optical modulators, Photonics 9(2), 2022: 82. https://doi.org/10.3390/photonics9020082
- [14] CAI D.-P., LU J.-H., CHEN C.-C., LEE C.-C., LIN C.-E., YEN T.-J., High Q-factor microring resonator wrapped by the curved waveguide, Scientific Reports 5, 2015: 10078. https://doi.org/10.1038/srep10078
- [15] MARSH O.A., XIONG Y., YE W.N., Slot waveguide ring-assisted Mach–Zehnder interferometer for sensing applications, IEEE Journal of Selected Topics in Quantum Electronics 23(2), 2017: 440-443. https://doi.org/10.1109/JSTQE.2016.2617084
- [16] WAN S., NIU R., REN H.-L., ZOU C.-L., GUO G.-C., DONG C.-H., Experimental demonstration of dissipative sensing in a self-interference microring resonator, Photonics Research 6(7), 2018: 681-685. https://doi.org/10.1364/PRJ.6.000681
- [17] AMIRI I.S., RASHED A.N.Z., Power enhancement of the U-shape cavity microring resonator through gap and material characterizations, Journal of Optical Communications, 2019. https://doi.org/10.1515/joc-2019-0108
- [18] LI Z., BAI L., LI X., GU E., NIU L., ZHANG X., U-shaped micro-ring graphene electro-optic modulator, Optics Communications 428, 2018: 200-205. https://doi.org/10.1016/j.optcom.2018.07.062
- [19] CAMPA A., CONSOLINO L., RAVARO M., MAZZOTTI D., VITIELLO M.S., BARTALINI S., DE NATALE P., High-Q resonant cavities for terahertz quantum cascade lasers, Optics Express 23(3), 2015: 3751-3761. https://doi.org/10.1364/OE.23.003751
- [20] ERMOLAEV G.A., VORONIN K.V., TATMYSHEVSKIY M.K., MAZITOV A.B., SLAVICH A.S., YAKUBOVSKY D.I., TSELIN A.P., MIRONOV M.S., ROMANOV R.I., MARKEEV A.M., KRUGLOV I.A., NOVIKOV S.M., VYSHNEVYY A.A., ARSENIN A.V., VOLKOV V.S., Broadband optical properties of atomically thin PtS2 and PtSe2, Nanomaterials 11(11), 2021: 3269. https://doi.org/10.3390/nano11123269
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-835e41a6-b16e-44cc-89c8-f2a76af4b7ea