Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Spent lithium-ion batteries contain valuable metals such as cobalt, lithium, manganese and nickel. Smelting reduction of spent LIBs at high temperature results in metallic alloys. Therefore, it is necessary to recover the valuable metal ions present in the sulfuric acid leaching solutions of the metallic alloys. In this work, solvent extraction experiments were performed to separate the three metal ions, Co(II), Mn(II) and Ni(II) present in the leaching solutions of the metallic alloys. Synthetic sulfate solutions were prepared and commercial organophosphorous extractants were employed. First, both Co(II) and Mn(II) were completely extracted in one stage by using 40% saponified 0.3 M Cyanex 272, leaving Ni(II) in the raffinate. The small amount of Ni(II) co-extracted into Cyanex 272 was removed by two stages of cross-current scrubbing using pure CoSO4 solution. The effect of pH and CoSO4 concentration of the scrubbing solution on the scrubbing of Ni(II) was investigated. The Co(II) and Mn(II) present in the scrubbed Cyanex 272 were completely stripped by 0.05 M H2SO4 solution. Batch simulation experiments for the three stage of counter-current extraction with 1 M D2EHPA verified that Mn(II) and Co(II) were completely separated by selective extraction of Mn(II) into D2EHPA, leaving Co(II) in the raffinate. By consecutive extraction with Cyanex 272 and D2EHPA, pure solutions of Co(II), Mn(II) and Ni(II) with purity higher than 99.9% can be recovered from the starting solutions. A process was proposed for the treatment of sulfuric acid leaching solutions of spent LIBs containing Co(II), Mn(II) and Ni(II) by solvent extraction.
Rocznik
Tom
Strony
art. no. 193742
Opis fizyczny
Bibliogr. 31 poz., tab., wykr.
Twórcy
autor
- Department of Advanced Materials Science & Engineering, Mokpo National University, Chonnam 534-729, Korea
autor
- Department of Advanced Materials Science & Engineering, Mokpo National University, Chonnam 534-729, Korea
autor
- Department of Advanced Materials Science & Engineering, Mokpo National University, Chonnam 534-729, Korea
Bibliografia
- BAJOLLE, H., LAGADOC, M., LOUVET, N. 2022. The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Res Soc Sci. 93, 102850.
- BELLEMANS, I., DE WILDE, E., MOELANS, N., VERBEKEN, K. 2018. Metal losses in pyrometallurgical operations-A review. Adv. Colloid Interface Sci. 255, 47-63.
- CERRILLO-GONZALEZ, M. D. M., VILLEN-GUZMAN, M., VEREDA-ALONSO, C., RODRIGUEZ-MAROTO, J. M., PAZ-GARCIA, J. M. 2024. Towards Sustainable Lithium-Ion Battery Recycling: Advancements in Circular Hydrometallurgy. Processes. 12(7), 1485.
- GAJDA, B., BOHACKI, M. 2006. Laboratory simulation of nickel(II) and cobalt(II) ion separation in a continuous countercurrent extractor. Physicochem. Probl. Miner. Process. 40(1), 195-201.
- GUIMARAES, A. S., DA SILVA, P. S., MANSUR, M. B. 2014. Purification of nickel from multicomponent aqueous sulfuric solutions by synergistic solvent extraction using Cyanex 272 and Versatic 10. Hydrometallurgy. 150, 173-177.
- HABASHI, F. 2013. A Textbook of Hydrometallurgy. Métallurgie Extractive Québec.
- HE, B., ZEHNG, H., TANG, K., XI, P., LI, M., WEI, L., GUAN, Q. 2024. A comprehensive review of lithium-ion battery (LiB) recycling technologies and industrial market trend insights. Recycling. 9(1), 9.
- ICHLAS, Z. T., MUBAROK, M. Z., MAGNALUTA, A., VAUGHAN, J., SUGIARTO, A. T. 2020. Processing mixed nickel-cobalt hydroxide precipitate by sulfuric acid leaching followed by selective oxidative precipitation of cobalt and manganese. Hydrometallurgy. 191, 105185.
- JHA, M. K., KUMARI, A., PANDA, R., KUMAR, J. R., YOO, K., LEE, J. Y. 2016. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy. 165, 2-26.
- JING, C., TRAN, T. T., LEE, M. S. 2024. Recovery of iron phosphate and lithium carbonate from sulfuric acid leaching solutions of spent LiFePO4 batteries by chemical precipitation. Physicochem. Probl. Miner. Process. 189463
- KIM, H. H., PARK, K. H., NAM, C. W., YO ON, H. S., KIM, M. S., KIM, C. J., PARK, S. W. 2016. Recovery of copper from Synthetic Leaching solution of manganese nodule matte by solvent extraction-electrowinning process Resour. Recycl. 25(1), 60-67.
- LI, Z., DIAZ, L. A., YANG, Z., JIN, H., LISTER, T. E., VAHIDI, E., ZHAO, F. 2019. Comparative life cycle analysis for value recovery of precious metals and rare earth elements from electronic waste. Resour., Conserv. Recycl. 149, 20-30.
- LIU, C., LIN, J., CAO, H., ZHANG, Y., SUN, Z. 2019. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. J. Cleaner Prod. 228, 801-813.
- LIU, Y., NAN, S. H., LEE, M. S. 2015. A Study on the separation of Co (II), Ni (II), and Mg (II) by solvent extraction with cationic extractants. Bull. Korean Chem. Soc. 36(11), 2646-2650.
- MAKUZA, B., TIAN, Q., GUO, X., CHATTOPADHYAY, K., YU, D. 2021. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources. 491, 229622.
- NATARAJAN, S., ARAVINDAN, V. 2018. Burgeoning prospects of spent lithium-ion batteries in multifarious applications. Adv. Energy Mater. 8(33), 1802303.
- NATHSARMA, K. C., DEVI, N. 2006. Separation of Zn (II) and Mn (II) from sulphate solutions using sodium salts of D2EHPA, PC88A and Cyanex 272. Hydrometallurgy. 84(3-4), 149-154.
- NGUYEN, V. N. H., LEE, M. S. 2020. Separation of Co(II), Cu(II), Ni(II) and Mn(II) from synthetic hydrochloric acid leaching solution of spent lithium ion batteries by solvent extraction. Physicochem. Probl. Miner. Process. 56(4), pp.599-610.
- QASEM, N. A., MOHAMMED, R. H., LAWAL, D. U. 2021. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water. 4(1), 1-15.
- RABAH, M. A., BARAKAT, M. A. 2001. Utilization of cement kiln dust in the production of concrete. Environ. Eng. Sci. 18(2), 75-80.
- SOLE, KATHRYN C., FEATHER, ANGUS M., COLE, PETER M. 2005. Solvent extraction in southern Africa: An update of some recent hydrometallurgical developments. Hydrometallurgy. 78.1-2: 52-78.
- SWAIN, B. 2017. Recovery and recycling of lithium: A review. Sep. Purif. Technol. 172, 388-403.
- TANG, J., STEENARI, B. M. 2015. Solvent extraction separation of copper and zinc from MSWI fly ash leachates. Waste Management. 44, 147-154.
- TAWONEZVI, T., NOMNQA, M., PETRIK, L., BLADERGROEN, B. J. 2023. Recovery and recycling of valuable metals from spent lithium-ion batteries: A comprehensive review and analysis. Energies. 16(3), 1365.
- TRAN, T. T., MOON, H. S., LEE, M. S. 2022. Co, Ni, Cu, Fe, and Mn integrated recovery process via sulfuric acid leaching from spent lithium-ion batteries smelted reduction metallic alloys. Miner. Process. Extr. Metall. Rev. 43(8), 954-968.
- VERHOEF, E. V., DUFLOU, J. R., DEWULF, W. 2013. Resource efficiency: The case of lithium-ion batteries and ionexchange recovery. J. Cleaner Prod. 59, 103-111.
- WANG, K., ZHANG, G., LUO, M., ZENG, M. 2022. Separation of Co and Mn from acetic acid leaching solution of spent lithium-ion battery by Cyanex272. J. Environ. Chem. Eng. 10(5), 108250.
- WANG, X., SUN, T., CHENG, Z. 2010. Ion-exchange processes for recovery of lithium. J. Chem. Technol. Biotechnol. 85(9), 1337-1342.
- WEN, J., TRAN, T. T., LEE, M. S. 2024. Comparison of separation of Mn(II), Co(II), and Ni(II) by oxidative precipitation between chloride and sulfate solutions. Physicochem. Probl. Miner. Process. 60(1), 183029.
- YOO, K., SHIN, S. M., YANG, D. H., SOHN, J. S. 2010. Biological treatment of wastewater produced during recycling of spent lithium primary battery. Miner. Sci. Eng. 23(3), 219-224.
- ZANOLETTI, A., CARENA, E., FERRARA, C., BONTEMPI, E. 2024. A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries. 10(1), 38.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8356e7c7-834e-4c81-becb-1f67fc34ef9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.