PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of heat treatment on the surface morphology and optical properties of the Al2O3 thin film for use in solar cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The technology of manufacturing silicon solar cells is complex and consists of several stages. The final steps in succession are the deposition of antireflection layer and discharge contacts. Metallic contacts are usually deposited by the screen printing method and then, fired at high temperature. Therefore, this article presents the results of a research on the effect of heat treatment on the properties of the Al2O3 thin film previously deposited by the atomic layer deposition method. It works well as both passivating and antireflection coating. Moreover, heat treatment affects the value of the cell short-circuit current and, thus, its efficiency. The surface morphology, optical and electrical properties were investigated, describing the influence of heat treatment on the properties of the deposited layers and the manufactured solar cells.
Twórcy
  • Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 7 Towarowa St., 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland
Bibliografia
  • [1] Marks-Bielska, R. et al. The importance of renewable energy sources in Poland’s energy mix. Energies 13, 1–23 (2020). https://doi.org/10.3390/en13184624
  • [2] Asfar, Y. et al. Evaluating Photovoltaic Performance Indoors. In 2012 38th IEEE Photovoltaic Specialists Conference (PVSC). 1948–1951 (IEEE, Austin, USA 2012).
  • [3] Ranjan, S. et al. Silicon solar cell production. Comput. Chem. Eng.35, 1439–1453 (2011). https://doi.org/10.1016/j.compchemeng.2011.04.017
  • [4] Drygala, A. et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon. Int. J. Hydrog. Energy 41, 7563–7567 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.180
  • [5] Hou, G., Garcia, I. & Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 217, 29–39 (2021). https://doi.org/10.1016/j.solener.2021.01.060
  • [6] Dobrzański, L. A., Szindler, M., Drygała, A. & Szindler, M.M., Silicon solar cells with Al2O3 antireflection coating. Cen. Eur. J. Phys. 12, 666–670 (2014). https://doi.org/10.2478/s11534-014-0500-9
  • [7] Sarkar, S. & Pradhan, S. K. Silica-based antireflection coating by glancing angle deposition. Surf. Eng. 35, 982–985. (2019). https://doi.org/10.1080/02670844.2019.1596578
  • [8] Szindler, M. Szindler, M. M., Boryło, P. & Jung, T. Structure and optical properties of TiO2 thin films deposited by ALD method. Open Phys. 15, 1067–1071 (2017). https://doi.org/10.1515/phys-2017-0137
  • [9] Król, K. et al. Influence of atomic layer deposition temperature on the electrical properties of Al/ZrO2/SiO2/4H-SiC metal-oxide semiconductor structures. Phys. Status Solidi (A) 215, 1–7 (2018). https://doi.org/10.1002/pssa.201700882
  • [10] Boryło, P. et al. Structure and properties of Al2O3 thin films deposited by ALD proces. Vacuum 131, 319–326 (2016). https://doi.org/10.1016/j.vacuum.2016.07.013
  • [11] Drabczyk, K. et al. Comparison of diffused layer prepared using liquid dopant solutions and pastes for solar cell with screen printed electrodes. Microelectron. Int. 33, 167–171 (2016). https://doi.org/10.1108/MI-03-2016-0031
  • [12] Öğütman, K. et al. Spatial atomic layer deposition of aluminium oxide as a passivating hole contact for silicon solar cells. Phys. Status Solidi (A) 217, 1–6 (2020). https://doi.org/10.1002/pssa.202000348
  • [13] Drabczyk, K. et al. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14–21 (2016). https://doi.org/10.1016/j.solener.2015.12.029
  • [14] Park, H. H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 1–22 (2021). https://doi.org/10.3390/nano11010088
  • [15] Hossain, A. et al. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials Sci. 2, 204–226 (2020). https://doi.org/10.1016/j.nanoms.2019.10.001
  • [16] Werner, F. et al. High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia 8, 301–306 (2011). https://doi.org/10.1016/j.egypro.2011.06.140
  • [17] Werner, F., Cosceev, A. & Schmidt, J. Silicon surface passivation by Al2O3: Recombination parameters and inversion layer solar cells. Energy Procedia 27, 319–324 (2012). https://doi.org/10.1016/j.egypro.2012.07.070
  • [18] Swatowska, B. Antireflective and passivation properties of the photovoltaic structure with Al2O3 layer of different thickness. Microelectron. Int. 35, 177–180 (2018). https://doi.org/10.1108/MI-04-2018-0020
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-835149ee-5d3a-4e80-8e90-7a5222c21f76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.