
TELEINFORMATICS REVIEW
NO. 1-2, 2019

25

Generation of special form shift registers
using a dedicated software platform

Paweł AUGUSTYNOWICZ
Institute of Mathematics and Cryptology, Faculty of Cybernetics,

Military University of Technology
ul. Gen. S. Kaliskiego 2, 00-908 Warszawa

pawel.augustynowicz@wat.edu.pl

ABSTRACT: This article describes crucial functionalities of a Unified Framework for Nonlinear
Feedback Shift Register Generation (UFfNG). The core of UFfNG framework is a unified
algorithm for Nonlinear Feedback Shift Registers (NLFSR) enumeration which can be effectively
implemented in heterogeneous environments including CPUs, GPUs and FPGAs. For the sake of
completeness, implementation and efficiency results for each platform are discussed and
presented.

KEYWORDS: Nonlinear Feedback Shift Registers, de Bruijn sequences, pseudo-random number
generation

1. Introduction

The problem of the effective generation of pseudorandom binary
sequences with good statistical properties is a common issue that finds many
practical applications, e.g.: in cryptography, software testing, and simulations
[8], [10]. In his renowned work on pseudorandom sequence generation,
S.W. Golomb proposed using shift registers with special forms of feedback for
this purpose, in order to obtain bit sequences with the desired statistical or
structural properties [8]. This approach has found many proponents due to its

Paweł Augustynowicz

Teleinformatics Review, 1-2/2019
26

effectiveness and simplicity and is successfully used to this day. In particular,
designers of stream ciphers eagerly use shift registers in their designs [3], [5],
[7], although both for safety and performance reasons, it is necessary to ensure
appropriate feedback functions. Generating feedback functions with special
forms for shift registers is the task of the UFfNG software platform presented in
this paper. Due to the fact that such investigations are characterised by
significant complexity, the UFfNG software platform includes full support for
parallel and distributed computing and graphics accelerator cards, as well as a
module that can be run on FPGA systems (Field Programmable Logic Array).

2. Theoretical introduction

Definition 1
A shift register with a feedback function of the f order n can formally

be defined as a representation of vector space 2
nF on the same vector space with

the form:

0 1 1 1 1 0 1 1(, ,...,) (,..., , (, ,...,)),n n nx x x x x f x x x   (1)

where function f , having n variables is referred to as the feedback function.

A given shift register with a feedback function f is referred to as linear if
function f is linear, and nonlinear if the corresponding feedback function f is
nonlinear.

Definition 2
Consider a sequence of binary values s. Sequence s is referred to as

periodic if for a certain value 0p  , relation 0 :i i i ps s   is true. The lowest

value of p that has the property discussed is defined as the period of
sequence S.

It must be added that the maximum period of a sequence generated by
a shift register with a feedback function of the order n is 2n . From the point of
view of applicability, long periods of sequences generated by shift registers are
an extremely important property.

Generation of special form shift registers...

Teleinformatics Review, 1-2/2019
27

Definition 3

A de Bruijn sequence of the order n is a binary sequence with period 2 ,n
in which every n -element tuple occurs precisely once.

Definition 4
A modified de Bruijn sequence is a sequence obtained from a proper de

Bruijn sequence by removing one zero from an ordered tuple containing zero-
elements only.

Modified de Bruijn sequences can be generated by both linear and
nonlinear-feedback shift registers. For linear feedback registers, it has been
proven that they generate modified de Bruijn sequences with a maximum period
2 1n  only when the feedback function is defined by a primitive polynomial
over 2[]xF . However, no similar statements have been constructed in relation to
nonlinear-feedback registers, and the only method of finding nonlinear functions
that generate sequences with the properties discussed is comprehensive
searching of the prospective feedback functions. On the one hand, it is an
extremely exacting computational task, on the other, for the given order n , there

are
122

n n
nB

  different de Bruijn sequences, the fact of which was used as
early as 1894 by the French mathematician Flye Sainte-Marie [4], and
independently by G. de Bruijn in 1946 [3].

Another sequence type, interesting from the standpoint of practical and
theoretical applications, are so called square m-sequences. Their statistical and
structural properties were first comprehensively described at the beginning of
the 1990s, and in 1994 were presented at the Fast Software Encryption
conference in Leuven, Belgium [2], and have since been keenly studied [1].
Definition 5
A square m-sequence is a bit sequence generated by a shift register with
a feedback function with the following form:

0 1 1
0 1

(, ,...,)n ij i j
i j n

f x x x a x x
   

  (2)

Square m-sequences are characterised by a very interesting form of the generated
sequence, which can be presented as:

Paweł Augustynowicz

Teleinformatics Review, 1-2/2019
28

0 ,
0 1

:k n k i j i k j k
i j n

s a s s   
   

   . (3)

Studies of square m-sequences have determined the method for
algorithmically generating such sequences. It has been ascertained, for example,
that it is possible to construct Boolean functions that generate the sequence form
by introducing nonlinear disturbances into linear functions. Consider a Boolean
function with the following form:

0 1 1 0 1 1(, ,...,) (, ,...,)n n i i jf x x x g x x x x x x    (4)

for which ,1 , 1i j i j n    , and 0 1 1(, ,...,)ng x x x  is a linear function that
generates a complete-period sequence. It is an obvious conclusion that

0 1 1(, ,...,)ng x x x  must be defined by a primitive polynomial over 2[]xF . For

the given degree, there are (2 1)n

n
  primitive polynomials, and consequently

also different sequences that they generate (often referred to as linear
sequences).

3. The UFfNG software platform

The primary task of the UFfNG software platform is to enable its users to
effectively generate both linear- and nonlinear-feedback shift registers with the
maximal periods. The most important premise that the UFfNG software platform
meets is the fact that it alone enables performing parallel computations on
multiple CPUs (Central Processing Unit) using MPI (Message Passing Interface)
or on graphics accelerators with OpenCL (Open Computing Platform) or CUDA
(Compute Unified Device Architecture) support. Only running VHDL code
(Very High Speed Integrated Circuits Hardware Description Language) requires
additional steps related to compiling and uploading software to an appropriate
FPGA system, which is a standard procedure for such systems.

3.1. Key features and the interface

The UFfNG software platform provides the user with the following
features:

Generation of special form shift registers...

Teleinformatics Review, 1-2/2019
29

 testing the periods of shift registers with any feedback functions;

 constructing primitive polynomials over binary bodies, i.e. the
corresponding linear feedback functions, the use of which in shift registers
enables sequences with the maximal periods to be generated;

 generating feedback functions with a specific number of polynomials, with
the assumption that the functions can be generated in lexicographical order
or reverse lexicographical order;

 generating feedback functions that generate square m-sequences with the
maximal periods;

 checking whether a register with a specific feedback function generates
square m-sequences.

3.2. Feedback function testing algorithm

The core of the presented UFfNG software platform is a versatile period
test algorithm for linear- and nonlinear-feedback shift registers. It checks the
given function's period completeness by enumerating successive states and
verifying their uniqueness. When designing the algorithm, the fact that to
demonstrate the maximality of the given shift register, it suffices to demonstrate
that its initial state will be generated after exactly 2 1n  steps.

For the purpose of accurate representation and analysis of the feedback
function testing algorithm, assume the following data designations:

 LFSR – bit representation of the linear part of the feedback function;
 NLFSR – bit representation of the nonlinear part of the feedback function;
 N – order of the shift register tested;

//DATA: LFSR; NLFSR; N;

//ALGORITHM
1. state := 0x1;
2. for i=1,…,(2^N)-1:

2.1. b_LFSR := (popcount(state and LFSR)) mod 2;
2.2. b_NLFSR := (popcount(state and NLFSR))/popcount(NLFSR);
2.3. bit := b_LFSR xor b_NLFSR;

Paweł Augustynowicz

Teleinformatics Review, 1-2/2019
30

2.4. state := (state<<1) xor bit;
2.5. if state==1 then:

2.5.1. return false;
2.6. end if;

3. end for;
4. if state==1 then:

4.1. return true;
5. else

5.1. return false;
6. end if;
Algorithm 1. Pseudocode of the period testing algorithm for sequences generated

by a shift register with a specific feedback function

To complement the designations assumed in the pseudocode of
algorithm 1, it should be added that popcount means an operation returning the
number of ones in the given string, mod – an operation of division with
remainder by a number, and the division used in point 3.2. is done integrally,
rounding the result down.

3.2.1. Implementation of the algorithm on CPUs

The effective implementation of the feedback shift register period testing
algorithm assumes complete parallelisation both at the level of the processor's
threads and the use of SIMD (Single Instruction Multiple Data) vector
instructions. With the use of the SIMD vector instructions offered by the latest
processors, simple operations, such as xor, bit shifts or counting ones in a string
can be done even on 512 bits concurrently, instead of the typical 32 or 64 bits.
For example, thanks to this approach, each of the 8 threads in a Intel Core i7-
6700 CPU can process up to 256 bits in parallel. It appears that the performance
increase offered by vector instructions fully justifies their utility. If the given
processor does not support vector instructions, the algorithm is run without this
support.

Another improvement used in the algorithm is the ability to force the
compiler to use the popcntq assembler instruction to count the ones in a given
string. The effectiveness of this solution is significantly greater even than the
best algorithmic solutions for determining the Hamming weight.

Generation of special form shift registers...

Teleinformatics Review, 1-2/2019
31

3.2.2. Implementation of the algorithm on graphics accelerators

The use of the OpenCL (Open Computing Language) programming
platform assumes a universal approach to programming graphics accelerators
[10]. However, version 1.1 of the standard, commonly supported by current
graphics accelerators, does not enable using the popcntq instruction to count
the ones in a given vector. It must be noted that this ability will be available in
the latest version of the OpenCL platform (2.0) [1] and in the NVIDIA solution
CUDA (Compute Unified Device Architecture), supported only by graphics
cards manufactured by this company. Given the above, it was decided to use two
separate implementations, one in the OpenCL standard, and the other in the
CUDA C language, whose use depends on the graphics accelerator available.
This approach enables using the computing power of the available computing
environment to the fullest. Another improvement, available only in the CUDA
implementation, is asynchronous data feeding to the card without the need to
pause calculations. This way, at practically no point during computing does the
card wait for new data to be sent to the processing unit, which eliminates delays
related to the communication interface.

3.2.3. Implementation of the algorithm on FPGA systems

Presently, the implementation of the algorithm on FPGA systems assumes
support only for Intel Altera systems due to the use of the Nios II
microprocessor to handle the communication interfaces [10]. For FPGA systems,
there are feedback function period testing algorithms better adjusted to their
specific character, although they require recompiling the system each time the
structure of the feedback function changes. Algorithm 1 bypasses this problem
and does not require recompiling at any stage of its operation, which greatly
streamlines its use for people unfamiliar with the hardware description
languages and FPGA systems.

Using the Nios II microprocessor was necessary to conceal the process of
communication with the CPU. In the implementation prepared for FPGA
systems, the microprocessor receives data from an external interface and stores
them in its buffer, waiting for the system to complete its current calculations.
When they are done, it immediately feeds an appropriate data portion,
eliminating the issue of delays related to the communication interface.

Paweł Augustynowicz

Teleinformatics Review, 1-2/2019
32

4. Results

Table 1 shows the durations of testing 100 MB of potential feedback
functions for various shift register lengths for selected CPUs, GPUs and FPGA
systems, and for different orders of shift registers.

Table 1. Expected time to test a 100 MB package of potential feedback functions for shift
registers

n Intel Core i7-6700 [s] NVDIA GeForce
980GTX [s]

Intel Altera
Cyclone V DE0-CV [s]

23
24
25
26
27
28
29
30

114
245
445
857
1626
3136
6056

11687

40
134
203
405
838
2179
3812

-

48
101
206
410
823
1763
6127

-

When using the computing platform discussed, searches are performed for

feedback functions with special forms that generate m-sequences, among others.
Sample functions with such properties, with a degree of 30 are:

1. 0 1 4 6 8 12 14 16 23 28 9 22x x x x x x x x x x x x         

2. 0 2 3 11 16 21 23 24 28 29 25 29x x x x x x x x x x x x         

3. 0 2 7 14 16 18 22 24 26 29 8 21x x x x x x x x x x x x         

Detailed results are presented in [1].

5. Summary and further studies

To summarise, the paper presented the main features and capabilities of
the UFfNG software platform. In particular, the feedback shift register period
testing algorithm and its implementations on different computing platforms was
discussed.

Generation of special form shift registers...

Teleinformatics Review, 1-2/2019
33

The development of the UFfNG software platform presented is intended
to be continued. In particular, as part of further work on the platform and its use,
the following are intended:
 support for version 2.0 of the OpenCL programming platform;
 implementation of the shift register period testing algorithm on Xilinx FPGA

systems;
 rewriting of the most critical sections of the processor code in a low-level

language;
 further studies on square m-sequences and generating all feedback functions

that generate square m-sequences up to degree 32.

References

[1] AUGUSTYNOWICZ P., KANCIAK K., SZMIDT J., Performance evaluation of NLFSRs
enumeration on heterogenous environments. preprint 2018.

[2] CHAN A., GAMES J., RUSHANAN J., On the quadratic m-sequences. Proceedings of
Fast Software Encrypton. LNCS, vol. 809, 1994, pp. 166-173.

[3] DE BRUIJN N.G., A combinatorial problem. Indag. Math., 8, 1946, pp. 461-467.

[4] DĄBROWSKI P., ŁABUZEK G., RACHWALIK T., SZMIDT J., Searching for Nonlinear
Feedback Shift Registers with Parallel Computing. Information Processing Letters,
Vol. 114, No. 5, May, 2014, pp. 268-272.

[5] DE CANNIÈRE C., PRENEEL B., Trivium specifications. eSTREAM, ECRYPT
Stream Cipher Project, 2006.

[6] FLYE SAINT-MARIE C., Solution to question nr. 48. L’intermèdiaire des
Mathématiciens 1, 1894, pp. 107-110.

[7] GAMMEL B., GÖTTFERT R., KNIFFLER O., Achterbahnd-128/80. ECRYPT Stream
Cipher Project Report, 2006.

[8] GOLOMB S.W., Shift Register Sequences. Holden-Day, Inc., San Francisco, 1967.

[9] HELL M., JOHANSSON T., MEIER W., Grain – A Stream Cipher for Constrained
Environments. International Journal of Wireless and Mobile Computing, Vol. 2,
No. 1, 2007, pp. 86-93.

[10] RIVAT J., SÁRKÖZY A., On Pseudorandom Sequences and Their Application. In:
General Theory on Information Transfer and Combinatorics, LNCS, Vol. 4123,
Springer, 2006, pp. 343-361.

Paweł Augustynowicz

Teleinformatics Review, 1-2/2019
34

Electronic sources
[11] https://www.khronos.org/opencl/

[12] https://www.altera.com/products/processors/overview.html

Generacja rejestrów przesuwnych szczególnych postaci przy
wykorzystaniu odpowiedniej platformy programistycznej

STRESZCZENIE: W niniejszym artykule zaprezentowano i omówiono przygotowaną przez autora
platformę programistyczną, umożliwiającą generację rejestrów przesuwnych z funkcjami
sprzężenia zwrotnego szczególnych postaci, o nazwie UFfNG (ang Unified Framework for
Nonlinear Feedback Shift Register Generation). Rdzeniem zaprojektowanej platformy
programistycznej jest uniwersalny algorytm sprawdzania okresu rejestrów przesuwnych
o liniowych i nieliniowych funkcjach sprzężenia zwrotnego, który został z powodzeniem
zaimplementowany do użytkowania w heterogenicznych środowiskach obliczeniowych,
zawierających procesory CPU, akceleratory graficzne bądź układy FPGA. W celu zilustrowania
efektywności i uniwersalności prezentowanego rozwiązania zamieszczono przykładowe wyniki
wydajności dla przedstawicieli poszczególnych platform.

SŁOWA KLUCZOWE: rejestry przesuwne, sekwencje de Bruijna, generacja ciągów
pseudolosowych

Received by the editorial staff on: 14.05.2018

