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ABSTRACT: This article describes crucial functionalities of a Unified Framework for Nonlinear 
Feedback Shift Register Generation (UFfNG). The core of UFfNG framework is a unified 
algorithm for Nonlinear Feedback Shift Registers (NLFSR) enumeration which can be effectively 
implemented in heterogeneous environments including CPUs, GPUs and FPGAs. For the sake of 
completeness, implementation and efficiency results for each platform are discussed and 
presented. 
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1. Introduction 

The problem of the effective generation of pseudorandom binary 
sequences with good statistical properties is a common issue that finds many 
practical applications, e.g.: in cryptography, software testing, and simulations 
[8], [10]. In his renowned work on pseudorandom sequence generation, 
S.W. Golomb proposed using shift registers with special forms of feedback for 
this purpose, in order to obtain bit sequences with the desired statistical or 
structural properties [8]. This approach has found many proponents due to its 
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effectiveness and simplicity and is successfully used to this day. In particular, 
designers of stream ciphers eagerly use shift registers in their designs [3], [5], 
[7], although both for safety and performance reasons, it is necessary to ensure 
appropriate feedback functions. Generating feedback functions with special 
forms for shift registers is the task of the UFfNG software platform presented in 
this paper. Due to the fact that such investigations are characterised by 
significant complexity, the UFfNG software platform includes full support for 
parallel and distributed computing and graphics accelerator cards, as well as a 
module that can be run on FPGA systems (Field Programmable Logic Array). 

2. Theoretical introduction 

Definition 1 
A shift register with a feedback function of the f  order n  can formally 

be defined as a representation of vector space 2
nF  on the same vector space with 

the form: 

0 1 1 1 1 0 1 1( , ,..., ) ( ,..., , ( , ,..., )),n n nx x x x x f x x x    (1) 

where function f , having n  variables is referred to as the feedback function. 

A given shift register with a feedback function f  is referred to as linear if 
function f  is linear, and nonlinear if the corresponding feedback function f  is 
nonlinear. 

Definition 2 
Consider a sequence of binary values s. Sequence s is referred to as 

periodic if for a certain value 0p  , relation 0 :i i i ps s    is true. The lowest 

value of p  that has the property discussed is defined as the period of 
sequence S. 

It must be added that the maximum period of a sequence generated by 
a shift register with a feedback function of the order n  is 2n . From the point of 
view of applicability, long periods of sequences generated by shift registers are 
an extremely important property. 

 



Generation of special form shift registers... 

Teleinformatics Review, 1-2/2019 
27

Definition 3 

A de Bruijn sequence of the order n  is a binary sequence with period 2 ,n  
in which every n -element tuple occurs precisely once. 

Definition 4 
A modified de Bruijn sequence is a sequence obtained from a proper de 

Bruijn sequence by removing one zero from an ordered tuple containing zero-
elements only. 

Modified de Bruijn sequences can be generated by both linear and 
nonlinear-feedback shift registers. For linear feedback registers, it has been 
proven that they generate modified de Bruijn sequences with a maximum period 
2 1n   only when the feedback function is defined by a primitive polynomial 
over 2[ ]xF . However, no similar statements have been constructed in relation to 
nonlinear-feedback registers, and the only method of finding nonlinear functions 
that generate sequences with the properties discussed is comprehensive 
searching of the prospective feedback functions. On the one hand, it is an 
extremely exacting computational task, on the other, for the given order n , there 

are 
122

n n
nB

   different de Bruijn sequences, the fact of which was used as 
early as 1894 by the French mathematician Flye Sainte-Marie [4], and 
independently by G. de Bruijn in 1946 [3]. 

Another sequence type, interesting from the standpoint of practical and 
theoretical applications, are so called square m-sequences. Their statistical and 
structural properties were first comprehensively described at the beginning of 
the 1990s, and in 1994 were presented at the Fast Software Encryption 
conference in Leuven, Belgium [2], and have since been keenly studied [1]. 
Definition 5 
A square m-sequence is a bit sequence generated by a shift register with 
a feedback function with the following form: 

0 1 1
0 1

( , ,..., )n ij i j
i j n

f x x x a x x
   

   (2) 

Square m-sequences are characterised by a very interesting form of the generated 
sequence, which can be presented as: 
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0 ,
0 1

:k n k i j i k j k
i j n

s a s s   
   

   . (3) 

Studies of square m-sequences have determined the method for 
algorithmically generating such sequences. It has been ascertained, for example, 
that it is possible to construct Boolean functions that generate the sequence form 
by introducing nonlinear disturbances into linear functions. Consider a Boolean 
function with the following form: 

0 1 1 0 1 1( , ,..., ) ( , ,..., )n n i i jf x x x g x x x x x x     (4) 

for which ,1 , 1i j i j n    , and 0 1 1( , ,..., )ng x x x   is a linear function that 
generates a complete-period sequence. It is an obvious conclusion that 

0 1 1( , ,..., )ng x x x   must be defined by a primitive polynomial over 2[ ]xF . For 

the given degree, there are (2 1)n

n
   primitive polynomials, and consequently 

also different sequences that they generate (often referred to as linear 
sequences). 

3. The UFfNG software platform 

The primary task of the UFfNG software platform is to enable its users to 
effectively generate both linear- and nonlinear-feedback shift registers with the 
maximal periods. The most important premise that the UFfNG software platform 
meets is the fact that it alone enables performing parallel computations on 
multiple CPUs (Central Processing Unit) using MPI (Message Passing Interface) 
or on graphics accelerators with OpenCL (Open Computing Platform) or CUDA 
(Compute Unified Device Architecture) support. Only running VHDL code 
(Very High Speed Integrated Circuits Hardware Description Language) requires 
additional steps related to compiling and uploading software to an appropriate 
FPGA system, which is a standard procedure for such systems. 

3.1. Key features and the interface 

The UFfNG software platform provides the user with the following 
features: 
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 testing the periods of shift registers with any feedback functions; 

 constructing primitive polynomials over binary bodies, i.e. the 
corresponding linear feedback functions, the use of which in shift registers 
enables sequences with the maximal periods to be generated; 

 generating feedback functions with a specific number of polynomials, with 
the assumption that the functions can be generated in lexicographical order 
or reverse lexicographical order; 

 generating feedback functions that generate square m-sequences with the 
maximal periods; 

 checking whether a register with a specific feedback function generates 
square m-sequences. 

3.2. Feedback function testing algorithm 

The core of the presented UFfNG software platform is a versatile period 
test algorithm for linear- and nonlinear-feedback shift registers. It checks the 
given function's period completeness by enumerating successive states and 
verifying their uniqueness. When designing the algorithm, the fact that to 
demonstrate the maximality of the given shift register, it suffices to demonstrate 
that its initial state will be generated after exactly 2 1n   steps. 

For the purpose of accurate representation and analysis of the feedback 
function testing algorithm, assume the following data designations: 

 LFSR – bit representation of the linear part of the feedback function; 
 NLFSR – bit representation of the nonlinear part of the feedback function; 
 N – order of the shift register tested; 

//DATA: LFSR; NLFSR; N; 

//ALGORITHM 
1. state := 0x1; 
2. for i=1,…,(2^N)-1: 

2.1. b_LFSR := (popcount(state and LFSR)) mod 2; 
2.2. b_NLFSR := (popcount(state and NLFSR))/popcount(NLFSR); 
2.3. bit := b_LFSR xor b_NLFSR; 
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2.4. state := (state<<1) xor bit; 
2.5. if state==1 then: 

2.5.1. return false; 
2.6. end if; 

3. end for; 
4. if state==1 then: 

4.1. return true; 
5. else 

5.1. return false; 
6. end if; 
Algorithm 1. Pseudocode of the period testing algorithm for sequences generated 

by a shift register with a specific feedback function 

To complement the designations assumed in the pseudocode of 
algorithm 1, it should be added that popcount means an operation returning the 
number of ones in the given string, mod – an operation of division with 
remainder by a number, and the division used in point 3.2. is done integrally, 
rounding the result down. 

3.2.1. Implementation of the algorithm on CPUs 

The effective implementation of the feedback shift register period testing 
algorithm assumes complete parallelisation both at the level of the processor's 
threads and the use of SIMD (Single Instruction Multiple Data) vector 
instructions. With the use of the SIMD vector instructions offered by the latest 
processors, simple operations, such as xor, bit shifts or counting ones in a string 
can be done even on 512 bits concurrently, instead of the typical 32 or 64 bits. 
For example, thanks to this approach, each of the 8 threads in a Intel Core i7-
6700 CPU can process up to 256 bits in parallel. It appears that the performance 
increase offered by vector instructions fully justifies their utility. If the given 
processor does not support vector instructions, the algorithm is run without this 
support. 

Another improvement used in the algorithm is the ability to force the 
compiler to use the popcntq assembler instruction to count the ones in a given 
string. The effectiveness of this solution is significantly greater even than the 
best algorithmic solutions for determining the Hamming weight. 
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3.2.2. Implementation of the algorithm on graphics accelerators 

The use of the OpenCL (Open Computing Language) programming 
platform assumes a universal approach to programming graphics accelerators 
[10]. However, version 1.1 of the standard, commonly supported by current 
graphics accelerators, does not enable using the popcntq instruction to count 
the ones in a given vector. It must be noted that this ability will be available in 
the latest version of the OpenCL platform (2.0) [1] and in the NVIDIA solution 
CUDA (Compute Unified Device Architecture), supported only by graphics 
cards manufactured by this company. Given the above, it was decided to use two 
separate implementations, one in the OpenCL standard, and the other in the 
CUDA C language, whose use depends on the graphics accelerator available. 
This approach enables using the computing power of the available computing 
environment to the fullest. Another improvement, available only in the CUDA 
implementation, is asynchronous data feeding to the card without the need to 
pause calculations. This way, at practically no point during computing does the 
card wait for new data to be sent to the processing unit, which eliminates delays 
related to the communication interface. 

3.2.3. Implementation of the algorithm on FPGA systems 

Presently, the implementation of the algorithm on FPGA systems assumes 
support only for Intel Altera systems due to the use of the Nios II 
microprocessor to handle the communication interfaces [10]. For FPGA systems, 
there are feedback function period testing algorithms better adjusted to their 
specific character, although they require recompiling the system each time the 
structure of the feedback function changes. Algorithm 1 bypasses this problem 
and does not require recompiling at any stage of its operation, which greatly 
streamlines its use for people unfamiliar with the hardware description 
languages and FPGA systems. 

Using the Nios II microprocessor was necessary to conceal the process of 
communication with the CPU. In the implementation prepared for FPGA 
systems, the microprocessor receives data from an external interface and stores 
them in its buffer, waiting for the system to complete its current calculations. 
When they are done, it immediately feeds an appropriate data portion, 
eliminating the issue of delays related to the communication interface. 
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4. Results 

Table 1 shows the durations of testing 100 MB of potential feedback 
functions for various shift register lengths for selected CPUs, GPUs and FPGA 
systems, and for different orders of shift registers. 

Table 1. Expected time to test a 100 MB package of potential feedback functions for shift 
registers 

n Intel Core i7-6700 [s] NVDIA GeForce 
980GTX [s] 

Intel Altera 
Cyclone V DE0-CV [s] 

23 
24 
25 
26 
27 
28 
29 
30 

114 
245 
445 
857 
1626 
3136 
6056 

11687 

40 
134 
203 
405 
838 
2179 
3812 

-  

48 
101 
206 
410 
823 
1763 
6127 

- 
 
When using the computing platform discussed, searches are performed for 

feedback functions with special forms that generate m-sequences, among others. 
Sample functions with such properties, with a degree of 30 are: 

1. 0 1 4 6 8 12 14 16 23 28 9 22x x x x x x x x x x x x           

2. 0 2 3 11 16 21 23 24 28 29 25 29x x x x x x x x x x x x           

3. 0 2 7 14 16 18 22 24 26 29 8 21x x x x x x x x x x x x           

Detailed results are presented in [1]. 

5. Summary and further studies 

To summarise, the paper presented the main features and capabilities of 
the UFfNG software platform. In particular, the feedback shift register period 
testing algorithm and its implementations on different computing platforms was 
discussed. 
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The development of the UFfNG software platform presented is intended 
to be continued. In particular, as part of further work on the platform and its use, 
the following are intended: 
 support for version 2.0 of the OpenCL programming platform; 
 implementation of the shift register period testing algorithm on Xilinx FPGA 

systems; 
 rewriting of the most critical sections of the processor code in a low-level 

language; 
 further studies on square m-sequences and generating all feedback functions 

that generate square m-sequences up to degree 32. 
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Generacja rejestrów przesuwnych szczególnych postaci przy 
wykorzystaniu odpowiedniej platformy programistycznej 

STRESZCZENIE: W niniejszym artykule zaprezentowano i omówiono przygotowaną przez autora 
platformę programistyczną, umożliwiającą generację rejestrów przesuwnych z funkcjami 
sprzężenia zwrotnego szczególnych postaci, o nazwie UFfNG (ang Unified Framework for 
Nonlinear Feedback Shift Register Generation). Rdzeniem zaprojektowanej platformy 
programistycznej jest uniwersalny algorytm sprawdzania okresu rejestrów przesuwnych 
o liniowych i nieliniowych funkcjach sprzężenia zwrotnego, który został z powodzeniem 
zaimplementowany do użytkowania w heterogenicznych środowiskach obliczeniowych, 
zawierających procesory CPU, akceleratory graficzne bądź układy FPGA. W celu zilustrowania 
efektywności i uniwersalności prezentowanego rozwiązania zamieszczono przykładowe wyniki 
wydajności dla przedstawicieli poszczególnych platform. 
 
SŁOWA KLUCZOWE: rejestry przesuwne, sekwencje de Bruijna, generacja ciągów 
pseudolosowych 
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