PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Structure and Electrical Resistivity Dependence of Molybdenum Thin Films Deposited by DC Modulated Pulsed Magnetron Sputtering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work reports the results of a study of Mo thin films synthesis by DC Pulsed Magnetron Sputtering method (PMS), operating at pulse main frequency of 100 kHz and modulated by the additional modulation frequency, driving in the range of 5-1000 Hz (modulated Pulse Magnetron Sputtering – mPMS). We have studied the influence of mPMS on plasma chemical reactions and mechanisms of layer growth using optical emission spectroscopy technique. Our experiment showed strong influence of mPMS method, on the morphology (scanning electron microscopy), phase composition (X-ray diffractometry) and electric properties (4-point probes method) of nanocrystalline and amorphous Mo films. From the utilitarian point of view, low value of resistivity – 43,2 μΩcm of synthesized Mo films predestines them as back contacts for thin solar cells CIGS. Our results revealed that additional modulation frequency should be considered as an important factor for optimization of films synthesis by means of PMS-based methods.
Twórcy
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
  • National Centre for Nuclear Research (NCBJ), 7 A. Soltana Str., 05-400 Otwock, Poland
autor
  • National Centre for Nuclear Research (NCBJ), 7 A. Soltana Str., 05-400 Otwock, Poland
autor
  • Institute of Microelectronics and Optoelectronics, 75 Koszykowa Str., 00-662 Warsaw, Poland
autor
  • Polish Academy of Sciences, Institute of Physics, 32/46 Aleja Lotnikow Str., 02-668 Warsaw, Poland
  • National Centre for Nuclear Research (NCBJ), 7 A. Soltana Str., 05-400 Otwock, Poland
autor
  • Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warsaw, Poland
Bibliografia
  • [1] W. Posadowski, Thin Solid Films 343-344, 85 (1999).
  • [2] K. Zdunek, K. Nowakowska-Langier, J. Dora, R. Chodun, Surf. Coat. Technol. 228, S367 (2013).
  • [3] K. Zdunek, L. Skowroński, R. Chodun, K. Nowakowska-Langier, A. Grabowski, W. Wachowiak, S. Okrasa, A. Wachowiak, O. Strauss, A. Wronkowski, P. Domanowski, Materials Science--Poland 34 (1), 137-141 (2016).
  • [4] K. Macak, V. Kouznetsov, J. Schneider, U. Helmersson, I. Petrov, J. Vac. Sci. Technol. A18, 1533 (2000).
  • [5] W. Posadowski, A. Wiatrowski, J. Dora, Z. Radziński, Thin Solid Films 516 (14), 4478 (2008).
  • [6] R. A Scholl, Power systems for reactive sputtering of insulating films, Surf. Coat. Technol. 93, 7-13 (1997).
  • [7] G. Wallace, Design considerations for the AC/DC C-MAG® deposition source and power supply system, Thin Solid Films 351, 21-26 (1999).
  • [8] http://four-point-probes.com/four-point-probe-theory/, accesed:18.09.2017
  • [9] F. Paschen, Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz, Ann. Phys. 273 (5), 69-96 (1889).
  • [10] R. Chodun, K. Nowakowska-Langier, B. Wicher, S. Okrasa, R. Minikayev, K. Zdunek, Thin Solid Films 640, 73-80 (2017).
  • [11] M. Hanif, M. Salik, Journal of Russian Laser Research 35 (3), (2014).
  • [12] R. Ganesan, The role of pulse length in target poisoning during reactive HiPIMS: application to amorphous HfO2, Plasma Sour. Sci. Technol. 24 (3), 035015 (2015).
  • [13] K. Nowakowska-Langier, R. Chodun, K. Zdunek, S. Okrasa, R. Kwiatkowski, K. Malinowski, E. Skladnik-Sadowska, M.J. Sadowski, Vacuum 128, 259-264 (2016).
  • [14] A. Anders, Structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518, 4087-4090 (2010).
  • [15] K. Zdunek, K. Nowakowska-Langier, R. Chodun, M. Kupczyk, P. Siwak, Vacuum 85, 514-517 (2010).
  • [16] T. Todorov, K. Reuter, D. Mitzi, Adv. Mater. 22, E156-E159 (2010).
  • [17] J. Scofield, A. Duda, D. Albin, B. Ballard, P. Predecki, Thin Solid Films 260, 26 (1995).
  • [18] N. Kasai, M. Kakudo, X-ray Diffraction by Macromolecule, Springer 364-504, 2005 edition (August 22, 2005).
  • [19] C. R. Tellier, J Mater Sci 198520:1901-19.
  • [20] A. Hofer, J. Schlacher, J. Keckes, J. Winkler, C. Mitterer, Vacuum 99, 149-152 (2014).
  • [21] H. Windischmann, R. Collins, J. Cavese, J. Non-Cryst. Solids 85, 261 (1986).
  • [22] K. Nowakowska-Langier, R. Chodun, R. Minikayev, L. Kurpaska, L. Skowronski, G. Strzelecki, S. Okrasa, K. Zdunek, Nuclear Instruments and Method in Physics Research B, (2017).
  • [23] B. Wicher, R. Chodun, K. Nowakowska-Langier, S. Okrasa, M. Trzcinski, K. Krol, R. Minikayev, L. Skoronski, L. Kurpaska, K. Zdunek, Applied Surface Science 456, 789-796 (2018
Uwagi
EN
1. This work was supported by the National Science Centre (grant no. 2015/19/D/ST8/01917).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83506b97-3bcd-4721-b9f6-f97165dada90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.