PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD Numerical Simulation of Biodiesel Synthesis in a Spinning Disc Reactor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a two-disc spinning disc reactor for intensified biodiesel synthesis is described and numerically simulated. The reactor consists of two flat discs, located coaxially and parallel to each other with a gap of 0.2 mm between the discs. The upper disc is located on a rotating shaft while the lower disc is stationary. The feed liquids, triglycerides (TG) and methanol are introduced coaxially along the centre line of rotating disc and stationary disc. Fluid hydrodynamics in the reactor for synthesis of biodiesel from TG and methanol in the presence of a sodium hydroxide catalyst are simulated, using convection-diffusion-reaction species transport model by the CFD software ANSYS©Fluent v. 13.0. The effect of the upper disc’s spinning speed is evaluated. The results show that the rotational speed increase causes an increase of TG conversion despite the fact that the residence time decreases. Compared to data obtained from adequate experiments, the model shows a satisfactory agreement.
Rocznik
Strony
21--37
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
autor
  • Politechnika Łódzka, Wydział Inżynierii Procesowej i Ochrony Środowiska, ul. Wólczańska 213, 90-924 Łódź, Poland
Bibliografia
  • 1. Brechtelsbauer C., Lewis N., Oxley P., Ricard F., Ramshaw C., 2001. Evaluation of a spinning disc reactor for continuous processing. Org. Process Res. Dev., 5, 65-68. DOI: 10.1021/op0000834.
  • 2. Cafiero L.M., Baffi G., Chianese A., Jachuck R.J., 2002. Process intensification: precipitation of barium sulfate using a spinning disc reactor. Ind. Eng. Chem. Res., 41, 5240-5246. DOI: 10.1021/ie010654w.
  • 3. Childs P.R.N., 2011. Rotating flow. Elsevier Inc.
  • 4. Cussler E.L., 1997. Diffusion: Mass transfer in fluid systems. 2nd edition, Cambridge University Press, New York, 111-120.
  • 5. Dehkordi A.M., 2002. Liquid–liquid extraction with chemical reaction in a novel impinging-jets reactor. AIChE J., 48, 2230-2239. DOI: 10.1002/aic.690481013.
  • 6. Dehkordi A.M., Vafaeimanesh A., 2009. Synthesis of barium sulfate nanoparticles using a spinning disc reactor: Effects of supersaturation, disc rotation speed, free ion ratio, and disc diameter. Ind. Eng. Chem. Res., 48, 7574-7580. DOI: 10.1021/ie801799v.
  • 7. Egbuna S.O, Ozonoh M, Aniokete T.C., 2013. Diffusion rate analysis in palm kernel oil extraction using different extraction solvents. IJRET, 02 (11), 639-648. DOI: 10.15623/ijret.2013.0211098.
  • 8. Freedman B., Butterfield R.O., Pryde E.H., 1986. Transesterification kinetics of soybean oil. J. American Oil Chemists' Soc., 63, 1375-1380. DOI: 10.1007/BF02679606.
  • 9. Green A., Johnson B., John A., 1999. Process intensification magnifies profits. Chem. Eng., 106, 66-73.
  • 10. Jachuck R., 2002. Process intensification for responsive processing. TransIChemE, 80, 233-238. DOI: 10.1205/026387602753581980.
  • 11. Krawczyk T., 1996. Biodiesel-alternative fuel makes inroads but hurdles remain. INFORM, 7, 801-82.
  • 12. Leveson P., Dunk W.A.E., Jachuck R.J., 2003. Numerical investigation of kinetics of free-radical polymerization on spinning disc reactor. J. Appl. Polym. Sci., 90, 693-699. DOI: 10.1002/app.12762.
  • 13. Lodhar H., Jachuck R.J.J., 2007. Intensified biodiesel reaction using continuous rotating tube reactor technology. Proceedings of the AIChE Annual Meeting, Salt Lake City, USA.
  • 14. Meeuwse M., Hamming E., Schaaf J.van der, Schouten J.C., 2011. Effect of rotor–stator distance and rotor radius on the rate of gas–liquid mass transfer in a rotor–stator spinning disc reactor. Chem. Eng. Process. Process Intensif., 50, 1095- 1107. DOI: 10.1016/j.cep.2011.05.022.
  • 15. Meeuwse M., Schaaf J. van der, Kuster B.FM. , Schouten J.C., 2010. Gas-liquid mass transfer in a rotor-stator spinning disc reactor. Chem. Eng. Sci., 65, 466-471. DOI: 10.1016/j.ces.2009.06.006.
  • 16. Noureddini H., Zhu D., 1997. Kinetics of transesterification of soybean oil. J. American Oil Chemists' Soc., 74, 1457-1463. DOI: 10.1007/s11746-997-0254-2.
  • 17. Przybylski R., 2007. Canola oil: Physical and chemical properties. Canola council of Canada web page.
  • 18. Qiu Z.Y., 2010. Intensification of liquid-liquid contacting processes. PhD Thesis, University of Kansas.
  • 19. Qiu Z.Y., Petera J., Weatherley L.R., 2012. Biodiesel synthesis in an intensified spinning disc reactor. Chem. Eng. J., 210, 597-609. DOI: 10.1016/j.cej.2012.08.058.
  • 20. SAS IP, Inc., 2010. ANSYS©Fluent v. 13.0 Theory Guide.
  • 21. Stankiewicz A.I., Moulijn J.A., 2002. Process intensification: Transforming chemical engineering. Chem. Eng. Prog., 96, 22-34.
  • 22. Tai C.Y., Tai C.T., Liu H.S., 2006. Synthesis of submicron barium carbonate using a high-gravity technique. Chem. Eng. Sci., 61, 7479-7486. DOI: 10.1016/j.ces.2006.08.065.
  • 23. Tai C.Y., Tai C.T., Chang M.H., Liu H.S., 2007. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disc reactor. Ind. Eng. Chem. Res., 46, 5536-5541. DOI: 10.1021/ie060869b.
  • 24. Tai C.Y., Wang Y.H., Tai C.T., Liu H.S., 2009. Preparation of silver nanoparticles using a spinning disc reactor in a continuous mode. Ind. Eng. Chem. Res., 48, 10104-10109. DOI: 10.1021/ie9005645.
  • 25. Van Eeten K.M.P., Van der Schaaf J., Schouten J.C. and Van Heijst G.J.F., 2012. Boundary layer development in the flow field between a rotating and a stationary disc. Phys. Fluids, 24, 033601. DOI: 10.1063/1.3698406.
  • 26. Visscher F., Hullu J., Croon M.H.J.M., Schaaf J., Schouten J., 2013. Residence time distribution in a single-phase rotor-stator spinning disc reactor. AIChE J., 59, 2686–2693. DOI: 10.1002/aic.14036.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-834f250b-5265-4cdf-847c-a3208b470122
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.