Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The time-fractional diffusion-wave equation with the Caputo derivative of the order 0 < α ≤ 2 is considered in a domain 0 ≤ r < R, 0 < ϕ < ϕ0 under different boundary conditions. The Laplace integral transform with respect to time, the finite Fourier transforms with respect to the angular coordinate, and the finite Hankel transforms with respect to the radial coordinate are used. The fundamental solutions are expressed in terms of the Mittag-Leffler function. The particular cases of the obtained solutions corresponding to the diffusion equation (α = 1) and the wave equation (α = 2) coincide with those known in the literature.
Rocznik
Tom
Strony
41--54
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Jan Długosz University in Częstochowa, Institute of Mathematics and Computer Science, 42-200 Częstochowa, Al. Armii Krajowej 13/15, Poland
- European University of Informatics and Economics (EWSIE) Institute of Computer Science ul. Białostocka 22, 03-741 Warszawa, Poland
Bibliografia
- [1] G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation. Springer, München, 1967.
- [2] A. S. Galitsyn, A. N. Zhukovsky, Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev, 1976 (In Russian).
- [3] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, In: A. Carpinteri, F. Mainardi (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223-276. Springer, Wien, 1997.
- [4] Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (1990), 309-321.
- [5] X. Y. Jiang, M. Y. Xu, The time fractional heat conduction equation in the general orthogonal curvilinear coordinate and the cylindrical coordinate system, Physica A 389, No 17 (2010), 3368-3374.
- [6] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
- [7] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett. 9 (1996), 23-28.
- [8] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons Fractals 7 (1996), 1461-1477.
- [9] B. N. Narahari Achar, J. W. Hanneken, Fractional radial diffusion in a cylinder, J. Mol. Liq. 114 (2004), 147-151.
- [10] N. Özdemir, D. Karadeniz, Fractional diffusion-wave problem in cylindrical coordinates, Phys. Lett. A 372 (2008), 5968-5972.
- [11] N. Özdemir, D. Karadeniz, B. B. Iskender, Fractional‚ optimal control problem of a distributed system in cylindrical coordinates, Phys. Lett. A 373 (2009), 221-226.
- [12] N. Özdemir, O. P. Agrawal, D. Karadeniz, B. B. Iskender, Fractional optimal control problem of an axis-symmetric diffusion-wave propagation, Phys. Scr. T 136 (2009), 014024.
- [13] I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999.
- [14] Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stresses, J. Thermal Stresses 28 (2005), 83-102.
- [15] Y. Z. Povstenko, Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation, Int. J. Solids Structures 44 (2007), 2324-2348.
- [16] Y. Z. Povstenko, Fractional radial diffusion in a cylinder, J. Mol. Liq. 137 (2008), 46-50.
- [17] Y. Povstenko, Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates, Sci. Issues Jan Długosz Univ. Częstochowa, Mathematics XIV (2009), 97-104.
- [18] Y. Povstenko, Axisymmetric solutions to the Cauchy problem for time-fractional diffusion equation in a circle, Sci. Issues Jan Długosz Univ. Częstochowa, Mathematics XV (2010), 109-117.
- [19] Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder, Fract. Calc. Appl. Anal. 14 (2011), 418-435.
- [20] Y. Povstenko, Solutions to time-fractional diffusion-wave equation in cylindrical coordinates, Adv. Difference Eqs 2011 (2011), Article ID 930297, 14.
- [21] Y. Povstenko, Different kinds of boundary conditions for time-fractional heat conduction equation, Scientific Issues, Jan Długosz University, Mathematics XVI, (2011), 61-66.
- [22] Y. Povstenko, The Neumann boundary problem for axisymmetric fractional heat conduction equation in a solid with cylindrical hole and associated thermal stresses, Meccanica 47, (2012), 23-29.
- [23] Y. Povstenko, Time-fractional radial heat conduction in a cylinder and associated thermal stresses, Arch. Appl. Mech. 82, (2012), 345-362.
- [24] H. Qi, J. Liu, Time-fractional radial diffusion in hollow geometries, Meccanica 45, (2010), 577-583.
- [25] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993.
- [26] W. R. Schneider, W. Wyss, Fractional diffusion and wave equations, J. Math. Phys. 30, (1989), 134-144.
- [27] I. N. Sneddon, The Use of Integral Transforms. McGraw-Hill, New York, 1972.
- [28] W. Wyss, The fractional diffusion equation, J. Math. Phys. 27, (1986), 2782-2785.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-834ea4e8-dcfa-4eba-bf91-f285f953d058