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SOLUTIONS TO FRACTIONAL DIFFUSION-WAVE

EQUATION IN A CIRCULAR SECTOR

YURIY POVSTENKO

Abstract

The time-fractional diffusion-wave equation with the Caputo derivative of the order 0 < α ≤ 2

is considered in a domain 0 ≤ r < R, 0 < ϕ < ϕ0 under different boundary conditions. The Laplace

integral transform with respect to time, the finite Fourier transforms with respect to the angular

coordinate, and the finite Hankel transforms with respect to the radial coordinate are used. The

fundamental solutions are expressed in terms of the Mittag-Leffler function. The particular cases

of the obtained solutions corresponding to the diffusion equation (α = 1) and the wave equation

(α = 2) coincide with those known in the literature.

1. Introduction

The time-fractional diffusion-wave equation

(1)
∂αT

∂tα
= a∆T, 0 < α ≤ 2,

is a mathematical model of different physical phenomena in amorphous, col-
loid, glassy and porous materials, random and disordered media, polymers,
dielectrics and semiconductors, in medicine and biological systems, etc. This
equation covers the whole spectrum from the so-called localized diffusion (the
Helmholtz equation when the order of the time-derivative α→ 0) through the
standard diffusion equation (represented by the particular case α = 1) to the
ballistic diffusion (the wave equation when α = 2).
Starting from the pioneering papers [4], [7], [8], [26], [28], considerable

interest has been shown in solutions to time-fractional diffusion-wave equa-
tion. Several problems in polar or cylindrical coordinates were studied in [5],
[9]–[12], [14]–[20], [22]–[24], among others. In this paper, the time-fractional
diffusion-wave equation with the Caputo derivative of the order 0 < α ≤ 2

Yuriy Povstenko — Jan Długosz University in Częstochowa.
Yuriy Povstenko — European University of Informatics and Economics, Warszawa.



42 YURIY POVSTENKO

is considered in a domain 0 ≤ r < R, 0 < ϕ < ϕ0 under different boundary
conditions.

2. Mathematical preliminaries

Integral transforms technique allows us to remove the partial derivatives
from the considered differential equations and to obtain the algebraic equation
in a transform domain. For details, see, e.g., [1], [2], [27].
The Laplace transform is defined as

(2) L{f(t)} = f∗(s) =

∫ ∞

0
f(t) e−st dt,

where s is the transform variable.
The inverse Laplace transfrom is carried out according to the Fourier–Mellin

formula

(3) L−1 {f∗(s)} = f(t) =
1

2πi

∫ c+i∞

c−i∞
f∗(s) est ds, t > 0,

where c is a positive fixed number.
The finite sin-Fourier transform is the convenient reformulation of the sin-

Fourier series in the domain 0 ≤ x ≤ L:

(4) F{f(x)} = f̃(ξn) =

∫ L

0
f(x) sin(xξn) dx,

(5) F−1{f̃(ξn)} = f(x) =
2

L

∞∑

n=1

f̃(ξn) sin(xξn),

where

(6) ξn =
nπ

L
.

The finite sin-Fourier transform is used in the case of the Dirichlet boundary
condition as for the second derivative of a function we have

F

{
d2f(x)

dx2

}
= −ξ2nf̃(ξn) + ξn

[
f(0)− (−1)nf(L)

]
.

The finite cos-Fourier transform is the convenient reformulation of the cos-
Fourier series in the domain 0 ≤ x ≤ L:

(7) F{f(x)} = f̃(ξn) =

∫ L

0
f(x) cos(xξn) dx,

(8) F−1{f̃(ξn)} = f(x) =
2

L

∞∑

n=0

′

f̃(ξn) cos(xξn),
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where ξn is defined by (6). The prime near the summation symbol in (8)
denotes that the term with n = 0 should be multiplied by 1/2.
The finite cos-Fourier transform is used in the case of Neumann boundary

conditions as

F

{
d2f(x)

dx2

}
= −ξ2nf̃(ξn)−

(
df

dx

)∣∣∣∣∣
x=0

+ (−1)n
(
df

dx

)∣∣∣∣∣
x=L

.

The Fourier–Bessel and Dini series can be interpreted in terms of finite
Hankel transform used in polar (cylindrical) coordinate system in the domain
0 ≤ r ≤ R. The form of the finite Hankel transform depends on the type
of boundary conditions at r = R. For Dirichlet boundary condition with the
given boundary value of a function at r = R we have

(9) H{f(r)} = f̂(ξνm) =

∫ R

0
f(r) Jν(rξνm) r dr,

(10) H−1{f̂(ξνm)} = f(r) =
2

R2

∞∑

m=1

f̂(ξνm)
Jν(rξνm)

[J ′

ν (Rξνm)]2
,

where Jν(r) is the bessel function of the first kind of the order ν. Here the
prime denotes the derivative of the Bessel function, and ξνm are the positive
roots of the transcendental equation

(11) Jν(Rξνm) = 0.

The basic equation for this integral transform reads:

H

{
d2f(r)

dr2
+
1

r

df(r)

dr
−

ν2

r2
f(r)

}
= −ξ2νmf̂(ξνm)−RξνmJ

′

ν (Rξνm)f(R).

In the case of Neumann boundary conditions with the given boundary value
of a normal derivative of a function

(12) H{f(r)} = f̂(ξνm) =

∫ R

0
f(r) Jν(rξνm) r dr,

(13) H−1{f̂(ξνm)} = f(r) = 2
∞∑

m=1

f̂(ξνm)
ξ2νm

R2ξ2νm − ν2
·

Jν(rξνm)

[Jν(Rξνm)]2
,

where ξνm are the positive roots of the transcendental equation

(14) J
′

ν (Rξνm) = 0.

It should be noted that for ν = 0 there appears the additional zero root
ξ00 = 0.
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The basic equation for this integral transform has the following form:

H

{
d2f(r)

dr2
+
1

r
·
df(r)

dr
−

ν2

r2
· f(r)

}
= −ξ2νmf̂(ξνm)+RJν(Rξνm)

(
df

dr

) ∣∣∣∣∣
r=R

.

For Robin boundary condition with the given linear combination of values
of function and its normal derivative at the boundary we have

(15) H{f(r)} = f̂(ξνm) =

∫ R

0
f(r) Jν(rξνm) r dr,

(16)

H−1{f̂(ξνm)} = f(r)

= 2
∞∑

m=1

f̂(ξνm) ·
ξ2νm

R2H2 +R2ξ2νm − ν2
·

Jν(rξνm)

[Jν(Rξνm)]2
,

where ξνm are the positive roots of the transcendental equation

(17) ξνmJ
′

ν (Rξνm) +HJν(Rξνm) = 0

and

H

{
d2f(r)

dr2
+
1

r
·
df(r)

dr
−

ν2

r2
f(r)

}

= −ξ2νmf̂(ξνm) +RJν(Rξνm)

[
df(r)

dr
+Hf(r)

]∣∣∣∣∣
r=R

.

Now we recall the basic notions of the fractional calculus [3], [6], [13], [25].
The Riemann–Liouville fractional integral is introduced as a natural general-
ization of the repeated integral Inf(t) written in a convolution type form:

(18) Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ) dτ, α > 0,

where Γ(α) is the gamma function.
The Laplace transform rule for the fractional integral has the following form:

(19) L{Iαf(t)} =
1

sα
· f∗(s).

The Riemann–Liouville derivative of the fractional order α is defined as
left-inverse to the fractional integral Iα, i.e.

(20) Dα
RLf(t) =

dn

dtn

[
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1f(τ) dτ

]
, n− 1 < α < n,
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and for its Laplace transform requires knowledge of the initial values of the
fractional integral In−α and its derivatives of the order k = 1, 2, . . . , n− 1

(21) L{Dα
RLf(t)} = sαf∗(s)−

n−1∑

k=0

DkIn−αf(0+)sn−1−k, n− 1 < α < n.

An alternative definition of the fractional derivative was proposed by Ca-
puto:

(22)
dαf(t)

dtα
=

1

Γ(n− α)

∫ t

0
(t− τ)n−α−1

dnf(τ)

dτn
dτ, n− 1 < α < n.

For its Laplace transform rule, the Caputo fractional derivative requires knowl-
edge of the initial values of the function f(t) and its integer derivatives of the
order k = 1, 2, . . . , n− 1

(23) L

{
dαf(t)

dtα

}
= sαf∗(s)−

n−1∑

k=0

f (k)(0+)sα−1−k, n− 1 < α < n.

The Caputo fractional derivative is a regularization in the time origin for
the Riemann–Liouville fractional derivative by incorporating the relevant ini-
tial conditions. The major utility of the Caputo fractional derivative is caused
by the treatment of differential equations of fractional order for physical appli-
cations, where the initial conditions are usually expressed in terms of a given
function and its derivatives of integer (not fractional) order, even if the gov-
erning equation is of fractional order [13]. If care is taken, the results obtained
using the Caputo formulation can be recast to the Riemann–Liouville version
and vice versa.
The Mittag-Leffler function in one parameter α [3], [6], [13]

Eα(z) =

∞∑

n=0

zn

Γ(αn+ 1)
, α > 0, z ∈ C,

provides a generalization of the exponential function

ez =
∞∑

n=0

zn

Γ(n+ 1)
, z ∈ C.

The generalized Mittag-Leffler function in two parameters α and β is de-
scribed by the following series representation

Eα,β(z) =
∞∑

n=0

zn

Γ(αn+ β)
, α > 0, β > 0, z ∈ C.

The important particular cases of Mittag-Leffler functions are the following:

E1

(
−x2

)
= e−x

2

, E2

(
−x2

)
= cosx, E2,2

(
−x2

)
=
sinx

x
.



46 YURIY POVSTENKO

The essential role of the Mittag-Leffler functions in fractional calculus re-
sults from the formula for the inverse Laplace transform [6], [13]

(24) L−1
{

sα−β

sα + b

}
= tβ−1Eα,β(−bt

α).

3. The Dirichlet boundary condition. Statement of the problem

Consider the time-fractional diffusion-wave equation in polar coordinates in
the domain 0 ≤ r < R, 0 < ϕ < ϕ0

(25)
∂αT

∂tα
= a

(
∂2T

∂r2
+
1

r

∂T

∂r
+

1

r2
∂2T

∂ϕ2

)
+Φ(r, ϕ, t)

under initial conditions

t = 0 : T = f(r, ϕ), 0 < α ≤ 2,(26)

t = 0 :
∂T

∂t
= F (r, ϕ), 1 < α ≤ 2,(27)

and Dirichlet boundary conditions

(28) r = R : T = g1(ϕ, t),

(29) ϕ = 0 : T = g2(r, t),

(30) ϕ = ϕ0 : T = g3(r, t).

The solution reads:

(31)

T (r, t, ϕ) =

∫ ϕ0

0

∫ R

0
f(ρ, φ)Gf (r, ϕ, ρ, φ, t) ρ dρ dφ

+

∫ ϕ0

0

∫ R

0
F (ρ, φ)GF (r, ϕ, ρ, φ, t) ρ dρ dφ

+

∫ t

0

∫ ϕ0

0

∫ R

0
Φ(ρ, φ, τ)GΦ(r, ϕ, ρ, φ, t− τ) ρ dρ dφ dτ

+

∫ t

0

∫ ϕ0

0
g1(φ, τ)Gg1(r, ϕ, φ, t− τ) dφ dτ

+

∫ t

0

∫ R

0
g2(ρ, τ)Gg2(r, ϕ, ρ, t− τ) ρ dρ dτ

+

∫ t

0

∫ R

0
g3(ρ, τ)Gg3(r, ϕ, ρ, t− τ) ρ dρ dτ,



FRACTIONAL DIFFUSION-WAVE EQUATION IN A CIRCULAR SECTOR 47

where Gf (r, ϕ, ρ, φ, t) is the fundamental solution to the first Cauchy problem,
GF (r, ϕ, ρ, φ, t) is the fundamental solution to the second Cauchy problem,
GΦ(r, ϕ, ρ, φ, t) is the fundamental solution to the source problem,
Gg1(r, ϕ, φ, t) is the fundamental solution to the first Dirichlet problem,
Gg2(r, ϕ, ρ, t) is the fundamental solution to the second Dirichlet problem,
Gg3(r, ϕ, ρ, t) is the fundamental solution to the third Dirichlet problem.

3.1. The fundamental solution to the first Cauchy problem under zero Dirichlet

boundary condition

In this case we have

f(r, ϕ) =
δ(r − ρ)

r
· δ(ϕ− φ), F (r, ϕ) = 0, Φ(r, ϕ, t) = 0,

g1(ϕ, t) = 0, g2(r, t) = 0, g3(r, t) = 0,

where δ(x) is the Dirac delta function. It should be noted that the two-
dimensional Dirac delta function in Cartesian coordinates after passing to
polar coordinates takes the form 1

2πrδ(r), but for the sake of simplicity we

have omitted the factor 1
2π in the delta term as well as the factor 2π in the

solution (31).
The Laplace transform with respect to time t gives

sαG∗f − sα−1 ·
δ(r − ρ)

r
· δ(ϕ− φ) = a

(
∂2G∗f
∂r2

+
1

r
·
∂G∗f
∂r

+
1

r2
·
∂2G∗f
∂ϕ2

)
,

r = R : G∗f = 0,

ϕ = 0 : G∗f = 0,

ϕ = ϕ0 : G∗f = 0.

Next we use the finite sin-Fourier transform (4) with respect to the angular
coordinate ϕ, thus obtaining

sαG̃∗f − sα−1 ·
δ(r − ρ)

r
· sin

(
nπφ

ϕ0

)
= a

[
∂2G̃∗f
∂r2

+
1

r
·
∂G̃∗f
∂r

−
(nπ/ϕ0)

2

r2
· G̃∗f

]
,

r = R : G̃∗f = 0.

The finite Hankel transform (9) with respect to the radial variable r with
ν = nπ/ϕ0 leads to the solution in the transform domain

̂̃G∗f = Jnπ/ϕ0
(ρξnm) · sin

(
nπφ

ϕ0

)
·

sα−1

sα + aξ2nm
,

where ξnm are the positive roots of the transcendental equation

Jnπ/ϕ0
(Rξnm) = 0.
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For the sake of simplicity, we have used the notation ξnm for the roots (not
ξnπ/ϕ0,m).
The inverse integral transforms result in

Gf (r, ϕ, ρ, φ, t) =
4

ϕ0R2

∞∑

n=1

∞∑

m=1

Eα

(
−aξ2nmtα

)
sin

(
nπϕ

ϕ0

)
sin

(
nπφ

ϕ0

)

×
Jnπ/ϕ0

(rξnm) Jnπ/ϕ0
(ρξnm)[

J
′

nπ/ϕ0
(Rξnm)

]2 .

3.2. The fundamental solution to the second Cauchy problem under zero

Dirichlet boundary condition

This solution is obtained for

f(r, ϕ) = 0, F (r, ϕ) =
δ(r − ρ)

r
· δ(ϕ− φ), Φ(r, ϕ, t) = 0,

g1(ϕ, t) = 0, g2(r, t) = 0, g3(r, t) = 0,

and has the form

GF (r, ϕ, ρ, φ, t) =
4t

ϕ0R2

∞∑

n=1

∞∑

m=1

Eα,2

(
−aξ2nmtα

)
sin

(
nπϕ

ϕ0

)
sin

(
nπφ

ϕ0

)

×
Jnπ/ϕ0

(rξnm) Jnπ/ϕ0
(ρξnm)[

J
′

nπ/ϕ0
(Rξnm)

]2 .

3.3. The fundamental solution to the source problem under zero Dirichlet

boundary condition

In this case

f(r, ϕ) = 0, F (r, ϕ) = 0, Φ(r, ϕ, t) =
δ(r − ρ)

r
· δ(ϕ− φ) δ(t),

g1(ϕ, t) = 0, g2(r, t) = 0, g3(r, t) = 0,

and

GΦ(r, ϕ, ρ, φ, t) =
4tα−1

ϕ0R2

∞∑

n=1

∞∑

m=1

Eα,α

(
−aξ2nmtα

)
sin

(
nπϕ

ϕ0

)
sin

(
nπφ

ϕ0

)

×
Jnπ/ϕ0

(rξnm) Jnπ/ϕ0
(ρξnm)[

J
′

nπ/ϕ0
(Rξnm)

]2 .



FRACTIONAL DIFFUSION-WAVE EQUATION IN A CIRCULAR SECTOR 49

3.4. The fundamental solution to the first Dirichlet problem under zero initial

conditions

This solution corresponds to the choice

f(r, ϕ) = 0, F (r, ϕ) = 0, Φ(r, ϕ, t) = 0,

g1(ϕ, t) = δ(ϕ− φ) δ(t), g2(r, t) = 0, g3(r, t) = 0,

and is expressed as

Gg1(r, ϕ, φ, t) = −
4atα−1

ϕ0R

∞∑

n=1

∞∑

m=1

Eα,α

(
−aξ2nmtα

)
sin

(
nπϕ

ϕ0

)
sin

(
nπφ

ϕ0

)

×
ξnm Jnπ/ϕ0

(rξnm)

J
′

nπ/ϕ0
(Rξnm)

.

3.5. The fundamental solution to the second Dirichlet problem under zero

initial conditions

In this case
f(r, ϕ) = 0, F (r, ϕ) = 0, Φ(r, ϕ, t) = 0,

g1(ϕ, t) = 0, g2(r, t) =
δ(r − ρ)

r
· δ(t), g3(r, t) = 0,

and

Gg2(r, ϕ, ρ, t) =
4atα−1

ϕ0R2ρ2

∞∑

n=1

∞∑

m=1

nπ

ϕ0
Eα,α

(
−aξ2nmtα

)
sin

(
nπϕ

ϕ0

)

×
Jnπ/ϕ0

(rξnm) Jnπ/ϕ0
(ρξnm)[

J
′

nπ/ϕ0
(Rξnm)

]2 .

3.6. The fundamental solution to the third Dirichlet problem under zero

initial conditions

This type of fundamental solution is obtained for

f(r, ϕ) = 0, F (r, ϕ) = 0, Φ(r, ϕ, t) = 0,

g1(ϕ, t) = 0, g2(r, t) = 0, g3(r, t) =
δ(r − ρ)

r
· δ(t),

and reads

Gg3(r, ϕ, ρ, t) =
4atα−1

ϕ0R2ρ2

∞∑

n=1

∞∑

m=1

(−1)n+1 nπ

ϕ0
Eα,α

(
−aξ2nmtα

)

× sin

(
nπϕ

ϕ0

)
Jnπ/ϕ0

(rξnm) Jnπ/ϕ0
(ρξnm)[

J
′

nπ/ϕ0
(Rξnm)

]2 .
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4. The Neumann boundary condition

4.1. The fundamental solution to the first Cauchy problem under zero

Neumann boundary condition

To solve the problems under Neumann boundary condition the Laplace trans-
form (2) with respect to time t, the finite cos-Fourier transform (7) we respect
to the angular coordinate ϕ, and the finite Hankel transform (12) of the order
ν = nπ/ϕ0 with respect to the radial coordinate r are used. The solution has
the following form

Gf (r, ϕ, ρ, φ, t) =
2

R2ϕ0
+

4

ϕ0

∞∑

n=0

′

∞∑

m=1

Eα

(
−aξ2nmtα

)
·

ξ2nm

R2ξ2nm − (nπ/ϕ0)
2

×
Jnπ/ϕ0

(rξnm) Jnπ/ϕ0
(ρξnm)[

Jnπ/ϕ0
(Rξnm)

]2 · cos

(
nπϕ

ϕ0

)
cos

(
nπφ

ϕ0

)
,

where ξnm are the positive roots of the transcendental equation

J
′

nπ/ϕ0
(Rξnm) = 0.

4.2. The fundamental solution to the second Cauchy problem under zero

Neumann boundary condition

GF (r, ϕ, ρ, φ, t) =
2t

R2ϕ0
+
4t

ϕ0

∞∑

n=0

′

∞∑

m=1

Eα,2

(
−aξ2nmtα

)
·

ξ2nm

R2ξ2nm − (nπ/ϕ0)
2

×
Jnπ/ϕ0

(rξnm) Jnπ/ϕ0
(ρξnm)[

Jnπ/ϕ0
(Rξnm)

]2 · cos

(
nπϕ

ϕ0

)
cos

(
nπφ

ϕ0

)
.

4.3. The fundamental solution to the source problem under zero Neumann

boundary condition

GΦ(r, ϕ, ρ, φ, t)=
2tα−1

R2ϕ0Γ(α)
+
4tα−1

ϕ0

∞∑

n=0

′

∞∑

m=1

Eα,α

(
−aξ2nmtα

)

×
ξ2nm

R2ξ2nm − (nπ/ϕ0)
2 ·

Jnπ/ϕ0
(rξnm) Jnπ/ϕ0

(ρξnm)[
Jnπ/ϕ0

(Rξnm)
]2 · cos

(
nπϕ

ϕ0

)
cos

(
nπφ

ϕ0

)
.

4.4. The fundamental solution to the first mathematical Neumann problem

under zero initial conditions

In this case the boundary condition at r = R is formulated for the normal
derivative of the function

r = R :
∂Gg1

∂r
= δ(ϕ− φ) δ(t).
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The solution reads:

Gg1(r, ϕ, φ, t) =
2atα−1

R2ϕ0Γ(α)
+
4aRtα−1

ϕ0

∞∑

n=0

′

∞∑

m=1

Eα,α

(
−aξ2nmtα

)

×
ξ2nm

R2ξ2nm − (nπ/ϕ0)
2 ·

Jnπ/ϕ0
(rξnm)

Jnπ/ϕ0
(Rξnm)

· cos

(
nπϕ

ϕ0

)
cos

(
nπφ

ϕ0

)
.

4.5. The fundamental solution to the first physical Neumann problem

under zero initial conditions

The physical Neumann condition at r = R is formulated in terms of the heat
flux at the boundary:

r = R : D1−α
RL

∂Gg1

∂r
= δ(ϕ− φ) δ(t), 0 < α ≤ 1,

r = R : Iα−1
∂Gg1

∂r
= δ(ϕ− φ) δ(t), 1 < α ≤ 2.

The difference between the mathematical and physical boundary conditions
(as well as the difference between the solutions) disappear in the case of stan-
dard diffusion (heat conduction) equation corresponding to α = 1. For details
see [21], [22], [23].
The solution has the following form:

Gg1(r, ϕ, φ, t) =
2a

R2ϕ0
+
4aR

ϕ0

∞∑

n=0

′

∞∑

m=1

Eα

(
−aξ2nmtα

)

×
ξ2nm

R2ξ2nm − (nπ/ϕ0)
2 ·

Jnπ/ϕ0
(rξnm)

Jnπ/ϕ0
(Rξnm)

· cos

(
nπϕ

ϕ0

)
cos

(
nπφ

ϕ0

)
.

4.6. The fundamental solution to the second mathematical Neumann problem

under zero initial conditions

In this case the bounadry condition at ϕ = 0 is formulated for the normal
derivative of the function

ϕ = 0 : −
1

r
·
∂Gg2

∂ϕ
=

δ(r − ρ)

r
· δ(t).

The solution has the form:

Gg2(r, ϕ, ρ, t) =
2atα−1

R2ρϕ0Γ(α)
+
4atα−1

ρϕ0

∞∑

n=0

′

∞∑

m=1

Eα,α

(
−aξ2nmtα

)

×
ξ2nm

R2ξ2nm − (nπ/ϕ0)
2 ·

Jnπ/ϕ0
(rξnm) Jnπ/ϕ0

(ρξnm)[
Jnπ/ϕ0

(Rξnm)
]2 · cos

(
nπϕ

ϕ0

)
.
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4.7. The fundamental solution to the second physical Neumann problem

under zero initial conditions

For the physical Neumann problem, the bounadry conditions at ϕ = 0 is
formulated in terms of the normal component of the heat flux:

ϕ = 0 : −
1

r
·D1−α

RL

∂Gg2

∂ϕ
=

δ(r − ρ)

r
· δ(t), 0 < α ≤ 1,

ϕ = 0 : −
1

r
· Iα−1

∂Gg2

∂ϕ
=

δ(r − ρ)

r
· δ(t), 1 < α ≤ 2.

The solution is expressed as

Gg2(r, ϕ, ρ, t) =
2a

R2ρϕ0
+

4a

ρϕ0

∞∑

n=0

′

∞∑

m=1

Eα

(
−aξ2nmtα

)

×
ξ2nm

R2ξ2nm − (nπ/ϕ0)
2 ·

Jnπ/ϕ0
(rξnm) Jnπ/ϕ0

(ρξnm)[
Jnπ/ϕ0

(Rξnm)
]2 · cos

(
nπϕ

ϕ0

)
.

It should be emphasized that in fundamental solutions to the mathematical
and physical Neumann problems there appear different Mittag-Leffler func-
tions: Eα,α

(
−aξ2nmtα

)
and Eα

(
−aξ2nmtα

)
, respectively.

5. Mixed boundary value problems

There are several possibilities to formulate the mixed boundary value prob-
lem with the boundary condition of one type at r = R and the boundary
conditions of another type at ϕ = 0 and ϕ = ϕ0. As an example, we consider
the boundary-value problem with the mathematical Robin boundary condition
at r = R

r = R :
∂Gg1
∂r

+HGg1 = δ(ϕ− φ) δ(t)

and zero Dirichlet boundary conditions at ϕ = 0 and ϕ = ϕ0

ϕ = 0 : Gg1 = 0,

ϕ = ϕ0 : Gg1 = 0.

The Laplace transform (2) with respect to time t, the finite sin-Fourier
transform (4) with respect to the angular coordinate ϕ,the finite Hankel trans-
form (15) with respect to the radial coordinate r allow us to get the solution

Gg1(r, ϕ, φ, t) =
4aRtα−1

ϕ0

∞∑

n=1

∞∑

m=1

Eα,α

(
−aξ2nmtα

)
· sin

(
nπϕ

ϕ0

)
· sin

(
nπφ

ϕ0

)

×
ξnm

R2H2 +R2ξ2nm − (nπ/ϕ0)
2 ·

Jnπ/ϕ0
(rξnm)

Jnπ/ϕ0
(Rξnm)

,
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where ξnm are the positive roots of the transcendental equation

ξnmJ
′

nπ/ϕ0
(Rξnm) +HJnπ/ϕ0

(Rξnm) = 0.
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