PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hardware software co-simulation of a digital EMI filter using Xilinx system generator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mitigation of electromagnetic inference (EMI) is currently a challenge for scientists and designers in order to cope with electromagnetic compatibility (EMC) compliance in switching mode power supply (SMPS) and ensure the reliability of the whole system. Standard filtering techniques: passive and active ones present some insufficiency in terms of performance at high frequencies (HF) because analog components would no longer be controllable and this is mainly due to their parasitic elements. So developing EMI digital filters is very interesting, especially with the embedment of a machine control system on a field programmable gate array (FPGA) chip. In this paper, we present a design of an active digital EMI filter (ADF) to be integrated in a drive train system of an electric vehicle (EV). Hardware design as well as FPGA implementation issues have been presented to prove the efficiency of the developed digital filtering structure.
Słowa kluczowe
Rocznik
Strony
515–--527
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
autor
  • Laboratory of Electronics and Microelectronics of the FSM National Engineering School of Monastir, University of Monastir Avenue Ibn El-Jazzar, 5019 Monastir, Tunisia
autor
  • Laboratory of Electronics and Microelectronics of the FSM National Engineering School of Monastir, University of Monastir Avenue Ibn El-Jazzar, 5019 Monastir, Tunisia
autor
  • Electrical and Computer Engineering Department Queen’s University Kingston Ontario, Canada
autor
  • Laboratory of Electronics and Microelectronics of the FSM National Engineering School of Monastir, University of Monastir Avenue Ibn El-Jazzar, 5019 Monastir, Tunisia
Bibliografia
  • [1] Zhang X., Boroyevich D., Burgos R., Mattavelli P., Evaluation of alternative modulation schemes for three-level neutral-point-clamped three phase inverters, Proc. IEEE ECCE, pp. 2131–2138, Denver, CO, USA (2013).
  • [2] Wei S., Zargari N., Wu B., Rizzo S., Comparison and mitigation of common mode voltage in power converter topologies, in Proceedings IAC, Seattle, WA, USA, pp. 1852–1857 (2004).
  • [3] Wen B., Zhang X., Wang Q., Burgos R., Mattavelli P., Boroyevich D., Comparaison of three phase ac-ac matrix converter and voltage dc-link back to back converter topologies based on EMI filter, Proc. IEEE ECCE, Denver, CO, USA, pp. 2698–2706 (2013).
  • [4] Friedli T.,Kolar J., Rodriguez J., Wheeler P.W., Comparative Evaluation of Three-Phase AC-AC Matrix Converter and Voltage DC-Link Back-to-Back Converter Systems, IEEE transactions in industrial electronics, vol. 59, no. 12, pp. 4487–4510 (2012).
  • [5] Villaruz H.R., Liou W., Variable frequency DC/AC converter with EMI reduction, International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Philippines, pp. 1–6 (2014).
  • [6] Lai Y.-S., Shyu F.-S., Optimal common-mode voltage reduction PWM technique for inverter control with consideration of the dead-time effects – Part I: Basic development, IEEE Transactions on Industrial Applications, vol. 40, no. 6, pp. 1605–1612 (2004).
  • [7] Liu F., Lu T., Zhao Z.,Wei S., Impact of reduced common mode voltagePWMand common mode inductor on EMI characteristics of an inverter-driven motor, General Assembly and Scientific Symposium (URSI GASS), China, pp. 1–4 (2014).
  • [8] Midhun G., Sandhya P., SVPWM based common mode voltage mitigation using Boost Converter fed open-end winding AC drive, International Conference on Control Communication and Computing India (ICCC), India, pp. 206–211 (2015).
  • [9] Roy D.,RoyT.,Anew technique to implement conventional aswell as advanced PulseWidth Modulation techniques for multi-level inverter, IEEE International Conference on Power Electronics, India, pp. 1–6 (2014).
  • [10] Zhang X., Boroyevich D., Burgos R., Mattavelli P.,Wang F., Impact and compensation of dead time on common mode voltage elimination modulation for neutral-point-clamped three-phase inverters, Proc. IEEE ECCE Asia, Melbourne, VIC, Australia, pp. 1016–1022 (2013).
  • [11] Zhang X., Boroyevich D., Burgos R., Mattavelli P., Wang F., Improved common-mode voltage elimination modulation with dead-time compensation for three-level neutral-point-clamped three-phase inverters, Proc. IEEE ECCE, Melbourne, VIC, Australia, pp. 4240–4246 (2013).
  • [12] Le Q.-A., Lee D.-C., A novel SVPWM scheme for common-mode voltage reduction in five-level active NPC inverters, International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, pp. 1–5 ( 2015).
  • [13] Karthik K., Narsimharaju B.L., Srinivasa R.S., Five-level inverter using POD PWM technique, International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO), India, pp. 1–6 (2015).
  • [14] Xue J.,Wang F., Zhang X., Design of output passive EMI filter in DC-fed motor drive, Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, pp. 634–640 (2012).
  • [15] Jettanasen C., Thongsuk S., Attenuation of high-frequency electromagnetic noise in a single-phase AC motor drive, International Conference on Electrical Machines and Systems (ICEMS), Busan, Korea, pp. 1367–1370 (2013).
  • [16] Weimin W., Yanmin J., Yuan L., Min H., Yuanbin H., Shu-Hung C., A new passive filter design method for overvoltage suppression and bearing currents mitigation in a long cable based PWM inverter-fed motor drive system, IEEE International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), China, pp. 3103–3110 (2016).
  • [17] Kalaiselvi J., Srinivas S., Passive common mode filter for reducing shaft voltage, ground current, bearing current in dual two level inverter fed open end winding induction motor, International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Romania, pp. 595–600 (2014).
  • [18] Zhenyang Y., Shishan W., Zheng S., The reviews of integrated EMI filters applied in power electronic system, Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taiwan, pp. 227–230 (2015).
  • [19] Yitao L., See K.Y., Simanjorang R., Evaluation on filter topologies in high power density converter design for power quality and EMI control, 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Taiwan, pp. 20–23 (2015).
  • [20] Morris C.T., Han D., Sarlioglu B., Comparison and evaluation of common mode EMI filter topologies for GaN-based motor drive systems, 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), USA, pp. 2950–2956 (2016).
  • [21] Ian L., Xibo Y., Neville M., A holistic approach to optimise the power density of a silicon carbide (SiC) MOSFET based three-phase inverter, 2015 IEEE 11th International Conference on Power Electronics and Drive Systems (PEDS), Sydney, Australia, pp. 473–478 ( 2015).
  • [22] Chen W., Yang X., Wang Z., An Active EMI Filtering Technique for Improving Passive Filter Low-Frequency Performance, IEEE Transactions on Electromagnetic Compatibility, vol. 48, no. 1, pp. 172–177 (2006).
  • [23] Djilali H., Praveen K.J., Conducted EMI noise mitigation in DC-DC converters using active filtering method, IEEE Power Electronics Specialists Conference, Rhodes, Greece, pp. 188–194 (2008).
  • [24] Djilali H., Pahlevaninezhad M., Jain P.K., Implementation of a novel digital active EMI technique in a DSP-based DC–DC digital controller used in electric vehicle (EV), IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3126–3137 (2013).
  • [25] Djilali H., Mei Q., Digital active EMI control technique for switch mode power converters, IEEE Transactions on Electromagnetic Compatibility, vol. 55, no. 1, pp. 81–88 (2013).
  • [26] Pandit S., Shet V.N., Review of FPGA based control for switch mode converters, IEEE international Conference on Electrical, Computer and Communication Technologies, Coimbatore, India, pp. 1–5 (2017).
  • [27] Sun B., Burgos R., Assessment of switching frequency impact on the prediction capability of commonmode EMI emissions of sic power converters using unterminated behavioral models, IEEE Applied Power Electronics Conference and Exposition (APEC), USA, pp. 1153–1160 (2015).
  • [28] Karugaba S., Muetze A., Ojo O., On the common-mode voltage in multilevel multiphase single-and double-ended diode-clamped voltage source inverter systems, IEEE Transactions on Industrial Applications, vol. 48, no. 6, pp. 2079–2091 (2012).
  • [29] Payami S., Behera R.K., Iqbal A., Al-Ammari R., Common-mode voltage and vibration mitigation of a five-phase three-level NPC inverter fed induction motor drive system, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 349–361 (2015).
  • [30] Boroyevich D., Zhang X., Bishinoi H., Burgos R., Mattavelli P., Wang F., Conducted EMI and Systems Integration, 8th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, pp. 1–14 (2014).
  • [31] Hartmann M., Ertl H., Kolar J.W., EMI filter design for a 1 MHz, 10 kW three-phase/level PWM rectifier, IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1192–1204 (2011).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-834c2312-17ac-4d7e-b289-93f91c188a71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.