Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: This paper reports the results of investigations of the blood response of the modified titanium alloys surfaces. Methods: To enhance biocompatibility of the Ti-13Nb-13Zr alloy, anodisation was performed at 80 and 150 V. The oxidation process was carried out in a solution containing 4 mol dm−3 H3PO4 and 0.59 mol dm−3 Ca(H2PO2)2. Results: The haemolytic activity of the titanium alloy surface was not altered much by the anodisation. The obtained values of the percentage of haemolysis were well below the levels required for the materials intended for blood contact. The clotting time of the blood was similar for the as-ground sample and the sample anodised at 80 V. For the sample anodised at 150 V the clotting time was shorter. The differences between these samples were observed in partial thromboplastin time after activation, prothrombin time and thrombin time, after 24 h. Extracts taken from the samples were not toxic towards the L-929 mouse fibroblast cells. Conclusions: The proposed treatment might be appropriate for the preparation of the modified Ti-13Nb-13Zr surfaces intended for bone reconstruction or cardiovascular implants depending on process parameters.
Czasopismo
Rocznik
Tom
Strony
41--50
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Poland
autor
- Faculty of Chemistry, Silesian University of Technology, Poland
autor
- Faculty of Chemistry, Silesian University of Technology, Poland
autor
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Poland
autor
- Department of Experimental Surgery and Biomaterials Research, Wroclaw Medical University, Poland
autor
- Faculty of Chemistry, Silesian University of Technology, Poland
Bibliografia
- [1] Biological evaluation of medical devices - Part 5: Tests for in vitro cytotoxicity: ISO 10993-5, 2009.
- [2] Biological evaluation of medical devices - Part 18. Chemical characterization of materials: ISO 10993-18, 2005
- [3] Frost A., Jonsson A.B., Ridefelt P., Nilsson O., Ljunghal S., Ljunggren O., Thrombin, but not bradykinin, stimulates proliferation in isolated human osteoblasts, via a mechanism not dependent on endogenous prostaglandin formation, Acta Orfhop Scand, 1999,70:497-503.
- [4] Gepreel M.A.H., Niinomi M., Biocompatibility of Ti-alloys for long-term implantation, J Mech Behav Biomed, 2013,20:407-415.
- [5] Hong J., Eddahl K.N., Elgue G., Axen N., Larsson R., Nilsson B., Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis, Thromb Haemost, 1999,1:58-64.
- [6] Jaeggi Ch., Kern P., Michler J., Patscheider J., Tharian J., Munnik F., Film formation and characterization of anodic oxides on titanium for biomedical applications, Surf Inter Anal, 2006,38:182-185.
- [7] Kulkarni M., Mazare A., Schmuki P., Iglič A., Biomaterial surface modification of titanium and titanium alloys for medical applications. In: Seifalian A., de Mel A., Kalaskar D.M., editors. Nanomedicine, Manchester: One Central Press; 2014.
- [8] Lee H.J., Hong J.K., Goo H.C., Lee W.K., Park K.D., Kim S.H., Yoo Y.M., Kim Y.H., Improved blood compatibility and decreased VSMC proliferation of suface-modified metal grafted with sulfonated PED or heparin, J Biomater Sci Polymer Edn, 2002,13:939-952.
- [9] Liu X., Li G., Xia Y., Investigation of the discharge mechanism of plasma electrolytic oxidation using Ti tracer, Surf Coat Technol, 2012,206:4462-4465.
- [10] Mazare A., Ionita D., Totea G., Demetrescu I., Calcination condition effect on microstructure, electrochemical and hemolytic behavior of amorphous nanotubes on Ti6Al7Nb alloy, Surf Coat Technol, 2014,252:87-92.
- [11] McKay G.C., Macnair R., MacDonald C., Grant M.H., Interactions of orthopaedic metals with an immortalized rat osteoblast cell line, Biomaterials, 1996,17:1339-1344.
- [12] Nawrat G., Simka W., Electrolytic polishing and electrochemical passivation of implants made of titanium and its alloys. Przem Chem, 2003,82:851-854 (in polish).
- [13] Nguyen T.D.T., Park I.S., Lee M.H., Bae T.S., Enhanced biocompatibility of a precalcified nanotubular TiO2 layer on Ti–6Al–7Nb alloy, Surf Coat Technol, 2013,236:127-134.
- [14] Satoh K., Ohtsu N., Sato S., Wagatsuma K., Surface modification of Ti–6Al–4V alloy using an oxygen glow-discharge plasma to suppress the elution of toxic elements into physiological environment, Surf Coat Technol, 2016,232:298-302.
- [15] Seyfert U.T., Biehl V., Schenk J., In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4, Biomolec Eng, 2002,19:91-96.
- [16] Simka W., Preliminary investigations on the anodic oxidation of Ti–13Nb–13Zr alloy in a solution containing calcium and phosphorus, Electrochim Acta, 2011,56:9831-9837.
- [17] Simka W., Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L., Electrochemical polishing of Ti–13Nb–13Zr alloy, Surf Coat Technol, 2012,213:239-246.
- [18] Simka W., Krząkała A., Masełbas M., Dercz G., Szade J., Winiarski A., Michalska J., Formation of bioactive coatings on Ti–13Nb–13Zr alloy for hard tissue implants, : RSC Advances, 2013, 3:11195-11204.
- [19] Song H.J., Park S.H., Jeong S.H., Park Y.J., Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes, J Mater Process Technol, 2009,209:864-870.
- [20] Smith B.S., Yoriya S., Grissom L., Grimes C.A., Popat K.C., Hemocompatibility of titania nanotube arrays, J Biomed Mater Res A, 2010,95:350-360.
- [21] Szymonowicz M., Frączek-Szczypta A., Rybak Z., Błażewicz S., Comparative assessment of the effect of carbon-based material surfaces on blood clotting activation and haemolysis, Diam Relat Mater, 2013,40:89-95.
- [22] Szymonowicz M., Pielka S., Owczarek A., Haznar D., Pluta J., Studies of reaction of gelatin-alginate matrixes on morphotic elements and blood proteins, Macromo Symp, 2007,10:69-72.
- [23] Szymonowicz M., Rybak Z., Witkiewicz W., Pezowicz C., Filipiak J., In vitro hemocompatibility studies of (poly(L-lactide) and poly(L-lactide-co-glycolide) as materials for bioresorbable stents manufacture, Acta Bioeng Biomech, 2014,16:131-139.
- [24] Thor A., Rasmusson L., Wennerberg A., Thomsen P., Hirsch J.M., Nilsson B., Hong J., The role of whole blood in thrombin generation in contact with various titanium surfaces, Biomaterials, 2007,28:966-974.
- [25] Xu J.L., Zhong Z.C., Yu D.Z., Liu F., Luo J.M., Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy, J Mater Sci Mater Med, 2012,23:2839-2846.
- [26] Xue P., Li Y., Li K., Zhang D., Zhou C., Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy, Mater Sci Eng C, 2015,50:179-186.
- [27] Yu S., Yu Z.T., Preparation and activation of micro-arc oxidation films on a TLM titanium alloy, Biomed Mater, 2008,3:044112.
- [28] Zorn G., Lesman A., Gotman I., Oxide formation on low modulus Ti45Nb alloy by anodic versus thermal oxidation, Surf Coat Technol, 2006,201: 612-618.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83499415-4ea4-4ac6-bd1f-c4cac0696859