PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and computational approach to human brain modelling – aHEAD

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The human head is a highly complex structure, with a combination of hard and soft tissues and a variety of materials and interactions. Many researchers have used computational approaches to model the head, and several human finite element head models can be found in the literature. However, most of them are not geometrically accurate – for instance, the brain is simplified to a smooth spherical volume, which poses some concerns regarding boundary conditions and geometrical accuracy. Therefore, an advanced head model of a 28-year-old, designated as aHEAD 28 yo (aHEAD: advanced Head models for safety Enhancement And medical Development), has been developed. The model consists entirely of hexahedral elements for 3D structures of the head such as the cerebellum, skull and cerebrum, with detailed geometry of the gyri and sulci. Additionally, it is one of the first human head approaches published in the literature that includes cerebrospinal fluid simulated by Smoothed Particle Hydrodynamics (SPH) and a detailed model of pressurized bridging veins. To support the model’s credibility, this study is focused on physical material testing. A novel comprehensive experimental-computational approach is presented, which involves the brain tissue’s response to induced vibrations. The experiment successfully aimed to validate the material models used in the numerical analysis. Additionally, the authors present a kinematical model validation based on the Hardy experimental cadaver test. The developed model, along with its verification, aims to establish a further benchmark in finite element head modelling and can potentially provide new insights into injury mechanisms.
Rocznik
Strony
art. no. e218, 2023
Opis fizyczny
Bibliogr. 71 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
  • Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
autor
  • Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 7/9, 50-371 Wroclaw, Poland
  • CFturbo GmbH, Unterer Kreuzweg 1, 01097 Dresden, Germany
  • Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Prof. Szafrana 4, 65-516 Zielona Gora, Poland
  • Department of Forensic Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 4, 50-345 Wrocław, Poland
  • Department of Neurosurgery, Provincial Specialist Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland
  • Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
  • Department of Neurosurgery, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wroclaw, Poland
  • Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wroclaw, Poland
autor
  • Department of Neurosurgery, Provincial Specialist Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland
  • Faculty of Marine Engineering, Maritime University of Szczecin, Willowa 2, 71-650 Szczecin, Poland
Bibliografia
  • 1. Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 2017;16:987–1048. https://doi.org/10. 1016/S1474-4422(17)30371-X.
  • 2. James SL, Theadom A, Ellenbogen RG, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18:56–87. https://doi. org/10.1016/S1474-4422(18)30415-0.
  • 3. Te Ao B, Brown P, Tobias M, Ameratunga S, Barker-Collo S, Theadom A, McPherson K, Starkey N, Dowell A, Jones K, Feigin VL. Cost of traumatic brain injury in New Zealand: evidence from a population-based study. Neurology. 2014;83:1645–52. https:// doi.org/10.1212/WNL.0000000000000933.
  • 4. Bastien C, Neal-Sturgess C, Davies H, Cheng X. Computing brain white and grey matter injury severity in a traumatic fall. Math Comput Appl. 2020;25:61. https://doi.org/10.3390/mca25030061.
  • 5. Fernandes FAO, Alves de Sousa RJ, Ptak M, Wilhelm J. Certified motorcycle helmets: computational evaluation of the efficacy of standard requirements with finite element models. Math Comput Appl. 2020;25:12. https://doi.org/10.3390/mca25010012.
  • 6. Baghaei SM, Sadegh AM, Charles S. Characteristics of HIC in prediction of mTBI relating to crash pulses. Int J Veh Des. 2019;80:59. https://doi.org/10.1504/IJVD.2019.105066.
  • 7. Fernandes F, Alves de Sousa R, Ptak M, Migueis G. Helmet design based on the optimization of biocomposite energy-absorbing liners under multi-impact loading. Appl Sci. 2019;9:735. https:// doi.org/10.3390/app9040735.
  • 8. Li S, Xiao Z, Zhang Y, Li QM. Impact analysis of a honeycomb-filled motorcycle helmet based on coupled head-helmet modelling. Int J Mech Sci. 2021;199:106406. https://doi.org/10.1016/j. ijmecsci.2021.106406.
  • 9. Toma M, Nguyen PDH. Coup-contrecoup brain injury: fluid–structure interaction simulations. Int J Crashworthiness. 2020;25:175–82. https://doi.org/10.1080/13588265.2018.15509 10.
  • 10. Dmitruk A, Naplocha K, Pach J, Pyka D, Ziółkowski G, Bocian M, Jamroziak K. Experimental and numerical study of ballistic resistance of composites based on sandwich metallic foams. Appl Compos Mater. 2021;28:2021–44. https://doi.org/10.1007/ s10443-021-09957-0.
  • 11. Dymek M, Ptak M, Fernandes FAO. Design and virtual testing of american football helmets–a review. Arch Comput Methods Eng. 2021;29:1277–89. https://doi.org/10.1007/s11831-021-09621-7.
  • 12. Rawska K, Gepner B, Kerrigan JR. Effect of various restraint configurations on submarining occurrence across varied seat configurations in autonomous driving system environment. Traffic Inj Prev. 2021;22:S128–33. https://doi.org/10.1080/15389588.2021. 1939872.
  • 13. Varela MM, Fernandes FAO, Alves de Sousa RJ. Development of an eco-friendly head impact protection device. Appl Sci. 2020;10:2492. https://doi.org/10.3390/app10072492.
  • 14 Forman J, Miller M, Perez-Rapela D, Gepner B, Edwards MA, Jermakian JS. Investigation of factors influencing submarining mitigation with child booster seats. Traffic Inj Prev. 2022. https:// doi.org/10.1080/15389588.2022.2153594.
  • 15. Wdowicz D, Ptak M. Numerical approaches to pedestrian impact simulation with human body models: a review. Arch Comput Methods Eng. 2023. https://doi.org/10.1007/s11831-023-09949-2.
  • 16. Dixit P, Liu GR. A review on recent development of finite element models for head injury simulations. Arch Comput Methods Eng. 2017;24:979–1031. https://doi.org/10.1007/s11831-016-9196-x.
  • 17. Fernandes FAO, Alves de Sousa RJ, Ptak M. Finite element head modelling and head injury predictors. Head Inj Simulat Road Traf Acc. 2018. https://doi.org/10.1007/978-3-319-89926-8_1.
  • 18. Giudice JS, Zeng W, Wu T, Alshareef A, Shedd DF, Panzer MB. An analytical review of the numerical methods used for finite element modeling of traumatic brain injury. Ann Biomed Eng. 2019;47:1855–72. https://doi.org/10.1007/s10439-018-02161-5.
  • 19. Madhukar A, Ostoja-Starzewski M. Finite element methods in human head impact simulations: a review. Ann Biomed Eng. 2019. https://doi.org/10.1007/s10439-019-02205-4.
  • 20. Wang Q, Lou Y, Li T, Jin X. Development and application of digital human models in the field of vehicle collisions: a review. Ann Biomed Eng. 2021;49:1619–32. https:// doi. org/ 10. 1007/ s10439-021-02794-z.
  • 21. Fernandes FAO, Tchepel D, Alves de Sousa RJ, Ptak M. Development and validation of a new finite element human head model. Eng Comput. 2018;35:477–96. https://doi.org/10.1108/ EC-09-2016-0321.
  • 22. Zhao W, Ford JC, Flashman LA, McAllister TW, Ji S. White matter injury susceptibility via fiber strain evaluation using whole-brain tractography. J Neurotrauma. 2016;33:1834–47. https://doi. org/10.1089/neu.2015.4239.
  • 23. Zhou Z, Wang T, Jörgens D, Li X. Fiber orientation downsam-pling compromises the computation of white matter tract-related deformation. J Mech Behav Biomed Mater. 2022;132:105294. https://doi.org/10.1016/j.jmbbm.2022.105294.
  • 24. Wilhelm J, Ptak M, Fernandes FAO, Kubicki K, Kwiatkowski A, Ratajczak M, Sawicki M, Szarek D. Injury biomechanics of a child’s head: problems, challenges and possibilities with a new aHEAD finite element model. Appl Sci. 2020;10:4467. https:// doi.org/10.3390/app10134467.
  • 25. Fernandes FAO, de Alves Sousa RJ, Ptak M. Validation of YEAHM. Springer briefs application science technology. New York: Springer; 2018. p. 41–58. https:// doi. org/ 10. 1007/ 978-3-319-89926-8_3.
  • 26. Weickenmeier J, Saez P, Butler CAM, Young PG, Goriely A, Kuhl E. Bulging brains. J Elast. 2017;129:197–212. https://doi.org/10. 1007/s10659-016-9606-1.
  • 27. Zhou Z, Li X, Liu Y, Hardy WN, Kleiven S. Brain strain rate response: addressing computational ambiguity and experimental data for model validation. Brain Multiphysics. 2023;4:100073. https://doi.org/10.1016/j.brain.2023.100073.
  • 28. Jin JX, Zhang JY, Song XW, Hu H, Sun XY. Numerical simu- lation of fluid-structure interaction relations between skull and brain based on ALE and overlapping mesh methods. Appl Mech Mater. 2015;713–715:1782–5. https://doi.org/10.4028/www.scien tific.net/AMM.713-715.1782.
  • 29. Toma M, Nguyen PDH. Fluid–structure interaction analysis of cerebrospinal fluid with a comprehensive head model subject to a rapid acceleration and deceleration. Brain Inj. 2018;32:1576–84. https://doi.org/10.1080/02699052.2018.1502470.
  • 30. Zhou Z, Li X, Kleiven S. Fluid–structure interaction simulation of the brain–skull interface for acute subdural haematoma prediction. Biomech Model Mechanobiol. 2019;18:155–73. https://doi.org/ 10.1007/s10237-018-1074-z.
  • 31. Toma M, Chan-Akeley R, Lipari C, Kuo S-H. Mechanism of coup and contrecoup injuries induced by a knock-out punch. Math Comput Appl. 2020;25:22. https://doi.org/10.3390/mca25020022.
  • 32 Hu J. Parametric human modeling. In: Hu J, editor. Basic finite element method as applied to injury biomechanics. New York: Elsevier; 2018.
  • 33. Im K, Lee J-M, Lyttelton O, Kim SH, Evans AC, Kim SI. Brain size and cortical structure in the adult human brain. Cereb Cortex. 2008;18:2181–91. https://doi.org/10.1093/cercor/bhm244.
  • 34. Singh D, Boakye-Yiadom S, Cronin DS. Comparison of porcine brain mechanical properties to potential tissue simulant materials in quasi-static and sinusoidal compression. J Biomech. 2019;92:84–91. https://doi.org/10.1016/j.jbiomech.2019.05.033.
  • 35. Costa JMC, Fernandes FAO, Alves de Sousa RJ. Prediction of subdural haematoma based on a detailed numerical model of the cerebral bridging veins. J Mech Behav Biomed Mater. 2020;111:103976. https://doi.org/10.1016/j.jmbbm.2020.103976.
  • 36. Zhao W, Ji S. Incorporation of vasculature in a head injury model lowers local mechanical strains in dynamic impact. J Biomech. 2020;104:109732. https:// doi. org/ 10. 1016/j. jbiom ech. 2020. 109732.
  • 37. W.N. Hardy, C.D. Foster, M.J. Mason, K.H. Yang, A.I. King, S. Tashman, Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray, In: SAE Tech. Pap. SAE International. 2001. Doi: https://doi.org/10.4271/ 2001-22-0016.
  • 38. Hardy WN, Mason MJ, Foster CD, Shah CS, Kopacz JM, Yang KH, King AI, Bishop J, Bey M, Anderst W, Tashman S. A study of the response of the human cadaver head to impact. Stapp Car Crash J. 2007;51:17–80.
  • 39. Livermore Software Technology Corporation (LSTC), LS-DYNA keyword user’s manual vol. 1, Livermore, 2007.
  • 40. Yu C, Wang F, Wang B, Li G, Li F. A computational biomechanics human body model coupling finite element and multibody segments for assessment of head/brain injuries in car-to-pedestrian collisions. Int J Environ Res Public Health. 2020;17:492. https:// doi.org/10.3390/ijerph17020492.
  • 41. Dyna More, Human Model Total HUman Model for Safety THUMS v 4.0, (2012). http:// www. dynam ore. de/ en/ produ cts/ models/human 11/05/12 (Accessed 11 May 2012).
  • 42. Mendis KK, Stalnaker RL, Advani SH. A constitutive relationship for large deformation finite element modeling of brain tissue. J Biomech Eng. 1995;117:279–85.
  • 43. Patton DA, McIntosh AS, Kleiven S. The biomechanical determinants of concussion: finite element simulations to investigate brain tissue deformations during sporting impacts to the unprotected head. J Appl Biomech. 2013;29:721–30.
  • 44. Ratajczak M, Ptak M, Chybowski L, Gawdzińska K, Będziński R. Material and structural modeling aspects of brain tissue deformation under dynamic loads. Materials (Basel). 2019;12:271. https:// doi.org/10.3390/ma12020271.
  • 45. Wan Y, Fawzi AL, Kesari H. Determining rigid body motion from accelerometer data through the square-root of a negative semi-definite tensor, with applications in mild traumatic brain injury. Comput Methods Appl Mech Eng. 2022;390:114271. https://doi. org/10.1016/j.cma.2021.114271.
  • 46. MacManus DB, Ghajari M. Material properties of human brain tissue suitable for modelling traumatic brain injury. Brain Multiphysics. 2022;3:100059. https://doi.org/10.1016/j.brain.2022. 100059.
  • 47. Migueis GFJ, Fernandes FAO, Ptak M, Ratajczak M, Alves de Sousa RJ. Detection of bridging veins rupture and subdural haematoma onset using a finite element head model. Clin Biomech. 2019;63:104–11. https://doi.org/10.1016/j.clinbiomech.2019.02. 010.
  • 48. Z. Zhou. Evaluation of Fluid-Structure Interaction and Biofidelity of Finite Element Head Models. 2019.
  • 49 Jona G, Furman-Haran E, Schmidt R. Realistic head-shaped phantom with brain-mimicking metabolites for 7 T spectroscopy and spectroscopic imaging. NMR Biomed. 2021. https://doi.org/10. 1002/nbm.4421.
  • 50. W. Wolański, E. Kawlewska, D. Larysz, M. Gzik, J. Gorwa, R. Michnik, 2019 Prediction of the Child’s Head Growth in the First Year of Life, In: W. Wolański (ed) ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing 2019 Porto. Portugal Doi: https:// doi. org/ 10. 1007/ 978-3- 030- 32040-9_28.
  • 51. Mazurkiewicz L, Baranowski P, Karimi HR, Damaziak K, Malachowski J, Muszynski A, Muszynski A, Robbersmyr KG, Vangi D. Improved child-resistant system for better side impact protec- tion. Int J Adv Manuf Technol. 2018;97:3925–35. https://doi.org/ 10.1007/s00170-018-2236-y.
  • 52 Yang KH. Isoparametric formulation and mesh quality. Basic finite element method as applied to injury biomechanics. New York: Elsevier; 2018. https://doi.org/10.1016/B978-0-12-809831- 8.00003-9.
  • 53. Rusiński E, Czmochowski J, Smolnicki T. Advanced finite element method for load-carrying structures of machines. Wrocław: Publishing House of Wrocław University of Technology; 2000.
  • 54. Hardy WN. Response of the human cadaver head to impact. Detroit: Wayne State University; 2007.
  • 55. GHMBC, LLC, User Manual: M50 Occupant Version 4.2 for LS- DYNA. (2014).
  • 56. Ghajari M, Hellyer PJ, Sharp DJ. Computational modelling of traumatic brain injury predicts the location of chronic traumatic encephalopathy pathology. Brain. 2017;140:333–43. https://doi. org/10.1093/brain/aww317.
  • 57. Fischl B. FreeSurfer. Neuroimage. 2012;62:774–81. https://doi. org/10.1016/j.neuroimage.2012.01.021.
  • 58. Ratajczak M, Ptak M, Kwiatkowski A, Kubicki K, Fernandes FAO, Wilhelm J, Dymek M, Sawicki M, Żółkiewski S. Symmetry of the human head—are symmetrical models more applicable in numerical analysis? Symmetry (Basel). 2021;13:1–15. https:// doi.org/10.3390/sym13071252.
  • 59. Fernandes FAO. Análise biomecânica de impactos com capacetes: novos materiais e geometrias, biomechanical analysis of helmeted head impacts: novel materials and geometries. Aveiro: Universi- dade de Aveiro; 2017.
  • 60. LLC Elemance, Global Human Body Models Consortium, User Man. M50 Occupant Version 4.2 LS-DYNA. (2014).
  • 61. Monea AG, Van der Perre G, Baeck K, Delye H, Verschueren P, Forausebergher E, Van Lierde C, Verpoest I, Vander Sloten J, Goffin J, Depreitere B. The relation between mechanical impact parameters and most frequent bicycle related head injuries. J Mech Behav Biomed Mater. 2014;33:3–15. https://doi.org/10. 1016/j.jmbbm.2013.06.011.
  • 62. Delye H, Goffin J, Verschueren P, Vander Sloten J, Van der Perre G, Alaerts H, Verpoest I, Berckmans D. Biomechanical properties of the superior sagittal sinus-bridging vein complex. Stapp Car Crash J. 2006;50:625–36.
  • 63. Margulies SS. Infant skull and suture properties: measurements and implications for mechanisms of pediatric brain injury. J Biomech Eng. 2000;122:364. https://doi.org/10.1115/1.1287160.
  • 64. C. Giordano, S. Kleiven, (2016) Development of a 3-Year-Old Child FE Head Model, Continuously Scalable from 1.5- to 6-Year- Old, IRCOBI Conf. 288–302.
  • 65. Gomez-Gesteira M, Crespo AJC, Rogers BD, Dalrymple RA, Dominguez JM, Barreiro A. SPHysics—development of a free-surface fluid solver—part 2: efficiency and test cases. Comput Geosci. 2012;48:300–7. https://doi.org/10.1016/j.cageo.2012.02. 028.
  • 66. DYNAmore GmbH, LS-DYNA Examples, wave-structure interaction. (2018).
  • 67. Toma M, Dehesa-Baeza A, Chan-Akaley R, Nguyen PDH, Zwibel H. Cerebrospinal fluid interaction with cerebral cortex during pediatric abusive head trauma. J Pediatr Neurol. 2020;18:223–30. https://doi.org/10.1055/s-0040-1708495.
  • 68. Madhukar A, Chen Y, Ostoja-Starzewski M. Effect of cerebro-spinal fluid modeling on spherically convergent shear waves during blunt head trauma. Int J Numer Method Biomed Eng. 2017. https://doi.org/10.1002/cnm.2881.
  • 69 Duckworth H, Sharp DJ, Ghajari M. Smoothed particle hydro-dynamic modelling of the cerebrospinal fluid for brain biomechanics: accuracy and stability. Int j Numer Method Biomed Eng. 2021. https://doi.org/10.1002/cnm.3440.
  • 70 Rycman A, McLachlin S, Cronin DS. Comparison of numerical methods for cerebrospinal fluid representation and fluid–structure interaction during transverse impact of a finite element spinal cord model. Int J Numer Method Biomed Eng. 2022. https://doi.org/ 10.1002/cnm.3570.
  • 71. Alshareef A, Giudice JS, Forman J, Salzar RS, Panzer MB. A novel method for quantifying human in situ whole brain deformation under rotational loading using sonomicrometry. J Neuro-trauma. 2018;35:780–9. https://doi.org/10.1089/neu.2017.5362.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8348098e-5220-4aad-8638-ce4b6ff5a435
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.