PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of mechanical strength and corrosion resistance at variable pH of orthodontic wires

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Orthodontic wires are components of fixed appliances used to perform the necessary tooth movements in the course of the orthodontic treatment. A variety of materials e.g. metals, alloys, polymers and composites are used to produce orthodontic wires. This study examined the mechanical strength and cracks resistance of three different types of wires, i.e. made of: austenitic steel grade AISI 303, NiTi alloy and Tiβ alloy. Corrosion processes are regarded to have a harmful effect on the properties of orthodontic wires, such as their strength, biocompatibility and aesthetic appearance. In this study, we investigated the corrosive behaviour of the wires in the artificial saliva solutions with varied pH simulating the natural oral cavity environment. It was demonstrated that the orthodontic rectangular wires made of austenitic steel grade AISI 303 exhibited the highest tensile strength. The NiTi alloy wires exhibited the best plastic properties of all the examined samples. In the case of electrochemical tests (changes in corrosion potential over a period of 24 h), the wire made of austenitic steel and the NiTi alloy wire reached a stable level of the stationary potential in the acidic environment. For the wires made of Tiβ, the highest stationary potential was observed in the alkaline environment. Additionally, the Tiβ alloy wire revealed the broadest passivation area in the specified potential scope.
Rocznik
Strony
2--9
Opis fizyczny
Biblogr. 36 poz., rys., wykr., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Mickiewicza Av. 30, 30-059 Krakow, Poland
  • Silesian University of Technology, Faculty of Materials Engineering, Department of Advanced Materials and Technologies, Krasinskiego Str. 8, 40-019 Katowice, Poland
Bibliografia
  • [1] Shaw W.C., Richmond S., O’Brien K. D., et al.: Quality control in orthodontics: indices of treatment need and treatment standards. British Dental Journal 170 (1991) 107-112.
  • [2] Liu Z., McGrath C., Hägg U.: The impact of malocclusion/ orthodontic treatment need on the quality of life: a systematic review. Angle Orthodontist 79 (3) (2009) 585-591.
  • [3] Fischer T.J.: Orthodontic treatment acceleration with corticotomy- -assisted exposure of palatally impacted canines: a preliminary study. Angle Orthodontist 77 (3) (2007) 417-420.
  • [4] Porównanie metod stosowanych w ortodoncji. Kliniki.pl (29th November, 2020)
  • [5] 60 procent osób w Polsce ma wady zgryzu. prawo.pl (29th November, 2020)
  • [6] Allen K.R.: Methods of testing the mechanical properties of orthodontic wires. A report submitted in partial fulfilment of the requirements for the degree of Master of Dental Surgery, Department of Dentistry Faculty of Dentistry, The University of Adelaide South Australia, 1994.
  • [7] Khamatkar A.: Ideal Properties of Orthodontic Wires and Their Clinical Implications - A Review. Journal of Dental and Medical Sciences 14 (1) (2015) 47-50.
  • [8] Petrini L., Migliavacca F.: Biomedical applications of shape memory alloys. Journal of Metallurgy 2011 (2011) 1-15.
  • [9] Petrini L., Migliavacca F., Massarotti P., Schievano S., Dubini G., Auricchio F.: Computational studies of shape memory alloy behavior in biomedical applications. Journal of Biomechanical Engineering 125 (4) (2005) 716-725.
  • [10] Kotha R.S., Alla R.K., Shammas M., Ravi R.K.: An Overview of Orthodontic Wires. Trends in Biomaterials and Artificial Organs 28 (1) (2014) 32-36.
  • [11] Pelsue B.M., Zinelis S., Bradley T.G., Berzins D.W., Eliades T., Eliades G.: Structure, composition, and mechanical properties of australian orthodontic wires, Angle Orthodontist 79 (1) (2009) 97-101.
  • [12] Andriekute A., Vasiliauskas A., Sidlauskas A.: A survey of protocols and trends in orthodontic retention. Progress in Orthodontics 18 (31) (2017) 1-8.
  • [13] Wang Y., Liu C., Jian F., McIntyre G.T., Millett D.T., Hickman J., Lai W.: Initial arch wires used in orthodontic treatment with fixed appliances (Review). The Cochrane Collaboration. Published by John Wiley & Sons, Ltd., 2018
  • [14] Pataijindachote J., Juntavee N., Viwattanatipa N.: Corrosion analysis of orthodontic wires: an interaction study of wire type, pH and immersion time. Advances in Dentistry & Oral Health 10 (1) (2018) 1-7.
  • [15] Verstryngea A., Humbeeckb J. V., Willemsc G.: In-vitro evaluation of the material characteristics of stainless steel and beta- -titanium orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics 130 (4) (2006) 460-470.
  • [16] Castro S.M., Ponces M.J., Lopes J.D., Vasconcelos M., Pollmann M.C.F.: Orthodontic wires and its corrosion - The specific case of stainless steel and beta-titanium. Journal of Dental Sciences 10 (1) (2015) 1-7.
  • [17] Cempel M., Nikel G.: Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies 15 (3) (2006) 375-382.
  • [18] Rahilly G., Price N.: Nickel allergy and orthodontics. Journal of Orthodontics 30(2) (2003) 171-174.
  • [19] Fadlallah S.A., El-Bagoury N., Gad El-Rab S.M.F., Ahmed R.A., El-Ousamii G.: An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application. Journal of Alloys and Compounds 583 (2014) 455-464.
  • [20] Barcelos A.M., Luna A.S., Ferreira N., Castro Braga A.V., Baptista do Lago D.C; Ferreira de Senna L.: Corrosion evaluation of orthodontic wires in artificial saliva solutions by using response surface methodology. Materials Research 16 (1) (2013) 50-64.
  • [21] Surowska B., Weroński A.: Struktura i własności biomateriałów. (In Polish) Prace Naukowe Politechniki Lubelskiej 219 (1995) Mechanika 50.
  • [22] Eliaz N.: Corrosion of metallic biomaterials: A review. Materials 12 (3) (2019) 1-91.
  • [23] Świeczo-Żurek B.: Biomaterials. (in Polish) Wydawnictwo Politechniki Gdańskiej (2009).
  • [24] Loch J.: Corrosive behavior of biomedical titanium alloys in simulated physiological solutions. Doctoral dissertation, Kraków, 2017 (in Polish).
  • [25] https://www.ortodonta.info/
  • [26] https://www.falconpolska.com
  • [27] PN-EN 10002-1: Metals - Tensile test - Test method at ambient temperature, 2002 (in Polish).
  • [28] Małkiewicz K., Boryczko W., Sztogryn M., Kamiński J., Wierzchoń T.: Assessment of corrosion processes in steel orthodontic archwires – in vitro studies. Ortodontic Forum 15 (2019) 95-103.
  • [29] ISO 10271:2001 Dental metallic materials - Corrosion test methods (2001).
  • [30] Bolla V.L., Munnangi S.R., Kumar M.M.G, Chowdary U.K., Koppulu P., Swapna L.A.: Correlation between the pH of saliva, plaque and buffering capacity of saliva. International Journal of Applied Dental Sciences 3(4) (2017) 48-50.
  • [31] Choi W.S., Pang E.L., Ko W-S., Jun H., Bong H.J., Kirchlechner Ch., Raabe D., Choi P-P.: Orientation-dependent plastic deformation mechanisms and competition with stress-induced phase transformation in microscale NiTi. Acta Materialia 208 (2021) 1-11.
  • [32] Chen Y., Tyc O., Molnárowá O., Heller L., Šitter P.: Tensile deformation of superelastic NiTi Wires in wide temperature and microstructure ranges. Shape Memory and Superelasticity 5 (2019) 42-62.
  • [33] Song D., Kang G., Kan Q., Yu Ch., Zhang Ch.: The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy. Smart Materials and Structures 23 (1) (2014) 1-7.
  • [34] El Kouifat M.K., Ouaki B., El Hajjaji S., El Hamdouni Y.: Corrosion of Orthodontic Arch-Wires in Artificial Saliva Environment. Journal of International Dental and Medical Research 11 (3) (2018) 786-790.
  • [35] Trolić I.M., Turco G., Contardo L., Serdarević N.L., Otmačić Ćurković H., Špalj S.: Corrosion of Nickel-Titanium Orthodontic Archwires in Saliva and Oral Probiotic Supplements. Acta Stomatologica Croatica 51(4) (2017) 316-325.
  • [36] Trolić I.M., Serdarević N.L., Todoric Z., Budimir A., Spalj S., Otmačić Ćurković H.: Corrosion of orthodontic archwires in artificial saliva in the presence of Lactobacillus reuteri. Surface & Coatings Technology 370 (2019) 44-52.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-834775b4-261e-40f9-a44e-b857ad3a69c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.