PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Changes of Elongation Index of erythrocytes caused by storage of blood at low temperature

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: An important parameter characterizing the ability of erythrocytes to deform depending on the blood flow conditions is the Elongation Index (EI), and it is a parameter defined by the shape of the erythrocyte obtained as a diffraction pattern of erythrocytes at different values of shear stresses. Material and methods: EI measurements at different shear stress were performed by Laser-assisted Optical Rotational Cell Analyzer (LORRCA) for erythrocytes derived from Tissue Bank in Katowice. Measurements were performed immediately after receiving them from Tissue Bank and after 2, 9, and 28 days of storage of samples at the temperature of 4°C in solution with the anticoagulant. Results: An increase in the erythrocytes Elongation Index in the first 9 days of storing samples at low temperatures was observed in the entire range of applied shear stresses. This indicates an increase in the elasticity of erythrocytes during short-term storage at 4°C. In turn, on the 28th day of erythrocyte storage, a significant decrease in the Elongation Index for shear stresses greater than 1 Pa was observed, which indicates the stiffening of the erythrocyte membrane structure, reducing their elasticity. The relative decrease in the Elongation Index of erythrocytes stored for 28 days compared to erythrocytes measured at the beginning was similar and slightly greater than 30% for shear stresses greater than 3 Pa. For shear stresses lower than 3 Pa, the relative change in elongation index was smaller than for shear stresses greater than 3 Pa and increased with the increase in shear stress. Conclusions: The elongation index of erythrocytes stored in the anticoagulant solution at 4°C, initially increases in the entire range of applied shear stresses in the first few days from the moment of blood collection and preparation at the Tissue Bank, and then decreases, but on the ninth day of storage the elongation index is still higher than for blood immediately after collection.
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poland
  • Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poland
  • Regional Blood Center and Blood Treatment in Katowice, Poland
  • Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poland
  • Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poland
Bibliografia
  • 1. Gmerek K, Fabijańska-Mitek J. Zmiany zachodzące w krwinkach czerwonych przechowywanych w bankach krwi. Postępy Nauk Med. 2016;XXIX(2):119-125. http://www.pnmedycznych.pl/wp-content/uploads/2016/03/pnm_2016_119-125.pdf
  • 2. Kępińska-Szyszkowska M, Szyguła Z, Dąbrowski Z, Szarek M. Czynniki wpływające na zmiany właściwości reologicznych krwi - przegląd piśmiennictwa. J Lab Diagnostics. 2017;53(4):247-250. https://doi.org/10.5604/01.3001.0013.7992
  • 3. Słowińska L, Monkos K. Kliniczne zastosowania laserowo-optycznego rotacyjnego analizatora krwinek czerwonych Clinical applications of the Laser-assisted Optical Rotational Cell Analyser LORCA. Ann Acad Medicae Silesiensis. 2010;64(3-4):42-47. https://annales.sum.edu.pl/Kliniczne-zastosowania-laserowo-optycznego-rotacyjnego-analizatora-krwinek-czerwonych,114862,0,2.html
  • 4. Libionka A, Figiel W, Maga P, et al. Lepkość krwi w chorobach układu krążenia ze szczególnym uwzględnieniem kardiologicznego zespołu X Blood viscosity in cardiac syndrome X and other cardiovascular disorders. Cardiol J. 2005;12(7):465-470. https://journals.viamedica.pl/cardiology_journal/article/view/21881
  • 5. Antosik A, Żbikowska HM. Koncentraty krwinek czerwonych w transfuzjologii. Kosmos. 2014;63(1(302)):13-23. http://kosmos.icm.edu.pl/PDF/2014/13.pdf
  • 6. Scott KL, Lecak J, Acker JP. Biopreservation of red blood cells: past, present, and future. Transfus Med Rev. 2005;19(2):127-142. https://doi.org/10.1016/j.tmrv.2004.11.004
  • 7. Łȩjowska M, Zupańska B. Current opinions on some transfusion reactions. Acta Haematol Pol. 2009;40(2):407-423.
  • 8. Hogman CF, Meryman HT. Storage parameters affecting red blood cell survival and function after transfusion. Transfus Med Rev. 1999;13(4):275-296. https://doi.org/10.1016/S0887-7963(99)80058-3
  • 9. Almac E, Ince C. The impact of storage on red cell function in blood transfusion. Best Pract Res Clin Anaesthesiol. 2007;21(2):195-208. https://10.1016/j.bpa.2007.01.004
  • 10. Steiner ME, Assmann SF, Levy JH, et al. Addressing the question of the effect of RBC storage on clinical outcomes: The Red Cell Storage Duration Study (RECESS) (Section 7). Transfus Apher Sci. 2010;43(1):107-116. https://doi.org/10.1016/j.transci.2010.05.014
  • 11. Benjamin RJ. Evidence-based transfusion: young versus old blood as a case study. ISBT Sci Ser. 2009;4:323-328. https://doi.org/10.1111/j.1751-2824.2009.01262.x
  • 12. Hébert PC, Chin-Yee I, Fergusson D, et al. A pilot trial evaluating the clinical effects of prolonged storage of red cells. Anesth Analg. 2005;100(5):1433-1438. https://doi.org/10.1213/01.ANE.0000148690.48803.27
  • 13. Kiraly LN, Underwood S, Differding JA, Schreiber MA. Transfusion of aged packed red blood cells results in decreased tissue oxygenation in critically injured trauma patients. J Trauma - Inj Infect Crit Care. 2009;67(1):29-32. https://doi.org/10.1097/TA.0b013e3181af6a8c
  • 14. Corwin HL. Blood transfusion: First, do no harm! Chest. 1999;116(5):1149-1150. https://doi.org/10.1378/chest.116.5.1149
  • 15. Robinson SD, Janssen C, Fretz EB, et al. Red blood cell storage duration and mortality in patients undergoing percutaneous coronary intervention. Am Heart J. 2010;159(5):876-881. https://doi.org/10.1016/j.ahj.2010.02.018
  • 16. Hardeman MR, Dobbe JG, Ince C. The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer. Clin Hemorheol Microcirc. 2001;25(1):1-11. http://europepmc.org/abstract/MED/11790865
  • 17. Hardeman MR, Goedhart PT, Dobbe JGG, Lettinga KP. Laser-assisted optical rotational cell analyser (L.O.R.C.A.); I. A new instrument for measurement of various structural hemorheological parameters. Clin Hemorheol Microcirc. 1994;14(4):605-618. https://doi.org/10.3233/CH-1994-14416
  • 18. RR Mechatronics. User Manual Lorrca Laser-Assisted Optical Rotational Cell Analyzer Version 5.07 MRN-231-EN. https://manuals.rrmechatronics.com/Lorrca/PDF/LorrcaMaxsis_User_Manual.pdf
  • 19. Dąbrowski Z. Fizjologia Krwi - Wybrane Zagadnienia. Wydawnictwo Naukowe PWN; 1998.
  • 20. Traczyk WZ, Trzebski A. Fizjologia Człowieka z Elementami Fizjologii Stosowanej i Klinicznej. Wydawnictwo Lekarskie PZWL; 2004.
  • 21. Başkurt OK. Pathophysiological Significance of Blood Rheology. Turkish J Med Sci. 2003;33(6):347-355. https://journals.tubitak.gov.tr/medical/vol33/iss6/2
  • 22. Aubron C, Nichol A, Cooper DJ, Bellomo R. Age of red blood cells and transfusion in critically ill patients. Ann Intensive Care. 2013;3(2):1-11. https://doi.org/10.1186/2110-5820-3-2
  • 23. Karger R, Lukow C, Kretschmer V. Deformability of red blood cells and correlation with atp content during storage as leukocyte-depleted whole blood. Transfus Med Hemotherapy. 2012;39(4):277-282. https://doi.org/10.1159/000339809
  • 24. Hess JR. Measures of stored red blood cell quality. Vox Sang. 2014;107(1):1-9. https://doi.org/10.1111/vox.12130
  • 25. Spychalska J. Membranopatie krwinek czerwonych – patogeneza, obraz kliniczny i diagnostyka. Hematologia. 2012;3(2):81-119. https://journals.viamedica.pl/hematology_in_clinical_practice/article/viewFile/19213/15117
  • 26. Pasini EM, Lutz HU, Mann M, Thomas AW. Red blood cell (RBC) membrane proteomics - Part I: Proteomics and RBC physiology. J Proteomics. 2010;73(3):403-420. https://doi.org/10.1016/j.jprot.2009.06.005
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8347070a-ea2e-47d7-8bcf-d638ff22849b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.