PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quantification of nitrates leaching from grassland soils in winter using the Burns model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of a study on the level of nitrate leaching from the 0-30 cm layer of grassland (GL) soil in the Lublin Voivodship during the winters of 2018/2019, 2019/2020 and 2020/2021. The amounts of leached nitrates were determined using the Burns model. For the calculations based on this model - directly and indirectly, the results determination of residual nitrate nitrogen, texture and organic matter in GL soils, obtained within the framework of agricultural monitoring of soils by the National Chemical and Agricultural Station (KSChR), and results of system meteorological measurements conducted by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB) were used. The analysed soil samples were taken from 39 permanent control and measurement grassland sites. The research discovered in particular that: - the average leaching of nitrate nitrogen from GL mineral soil in the three analysed periods was 16.2 and 5.1 kg N∙ha-1 from organic soil; - on average, in autumn during the entire study period, 55.3% of NO3-N leached from the 0-30 cm layer of GL mineral soil, and 27.3% from organic soil; - among different agronomic categories of mineral soil, the highest leaching of NO3-N was recorded from medium soil (17.4 kg N∙ha-1 ) and the lowest from heavy soil (11.5 kg N∙ha-1); - individually determined values of NO3-N leaching from soil varied significantly from 0 to 68.5 kg N∙ha-1 for mineral soil and from 0.1 to 23.65 kg N∙ha-1 for organic soil.
Wydawca
Rocznik
Tom
Strony
39--49
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
  • Institute of Technology and Life Sciences - National Research Institute, Falenty, Hrabska Ave., 3, 05-090 Raszyn, Poland
  • Institute of Technology and Life Sciences - National Research Institute, Falenty, Hrabska Ave., 3, 05-090 Raszyn, Poland
Bibliografia
  • Bockstaller, C. et al. (2009) “Comparison of methods to assess the sustainability of agricultural systems. A review,” Agronomy for Sustainable Development, 29(1), pp. 223–235. Available at: https://doi.org/10.1051/agro:2008058.
  • Brand, A., Lilly, A. and Smith, J. (2020) “A simple approach to modelling the soil water budget in cool temperate mineral topsoils,” Environmental Modelling and Software, 127, 104700. Available at: https://doi.org/10.1016/j.envsoft.2020.104700.
  • Buczko, U. and Kuchenbuch, R.O. (2010) “Environmental indicators to assess the risk of diffuse nitrogen losses from agriculture,” Environmental Management, 45(5), pp. 1201–1222. Available at: https://doi.org/10.1007/s00267-010-9448-8.
  • Burns, I.G. (1976) “Equations to predict the leaching of nitrate uniformly incorporated to a known depth or uniformy distributed throughout a soil profile,” The Journal of Agricultural Science, 86(2), pp. 305–313. Available at: https://doi.org/10.1017/s0021859600054769.
  • Burns, I.G. (1980) “A simple model for predicting the effects of winter leaching of residual nitrate on the nitrogen fertilizer need of spring crops,” The Journal of Soil Science, 31, pp. 187–202. Available at: https://doi.org/10.1111/j.1365-2389.1980.tb02075.x.
  • Cameron, K.C. and Wild, A. (1982) “Prediction of solute leaching under field conditions: an appraisal of three methods,” The Journal of Soil Science, 33(4), pp. 659–669. Available at: https://doi.org/10.1111/j.1365-2389.1982.tb01797.x.
  • Chelil, S. et al. (2022) “NIT-DRAIN model to simulate nitrate concentrations and leaching in a tile-drained agricultural field,” Agricultural Water Management, 271, 107798. Available at: https://doi.org/10.1016/j.agwat.2022.107798.
  • Cichota, R. et al. (2016) “Effects of irrigation intensity on preferential solute transport in a stony soil,” New Zealand Journal of Agricultural Research, 59(2), pp. 141–155. Available at: https://doi.org/10.1080/00288233.2016.1155631.
  • Council Directive (1991) “Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources,” Official Journal, L 375.
  • Cummings, T.R. (1978) Agricultural land use and water quality in the upper St. Joseph River basin, Michigan. Michigan, U.S.: Geological Survey Water-Resources Investigations Open-file Report 78-950. Available at: https://doi.org/10.3133/ofr78950.
  • Decau, M.L., Simon, J.D. and Jacquet, A. (2004) “Nitrate leaching under grassland as affected by mineral nitrogen fertilization and cattle urine,” Journal of Environmental Quality, 33(2), pp. 637–644. Available at: https://doi.org/10.2134/jeq2004.6370.
  • Delin, S. and Stenberg, M. (2021) “Effects on nitrate leaching of the timing of cattle slurry application to leys,” Soil Use and Management, 37(3), pp. 436–448. Available at: https://doi.org/10.1111/sum.12595.
  • Domnariu, H. et al. (2020) “Influence of soil-texture on nitrate leaching from small-scale lysimeters toward groundwater in various environments,” Carpathian Journal of Earth and Environmental Sciences, 15(2), pp. 301–310. Available at: https://doi.org/10.26471/cjees/2020/015/130.
  • Drury, C.F. et al. (2007) “Residual soil nitrogen indicator for agricultural land in Canada,” Canadian Journal of Soil Science, 87(Special Issue), pp. 167–177. Available at: https://doi.org/10.4141/s06-064.
  • Eckard, R. et al. (2004) “Nitrate leaching from temperate perennial pastures grazed by dairy cows in south-eastern Australia,” Australian Journal of Agricultural Research, 55(9), 911. Available at: https://doi.org/10.1071/ar04042.
  • El-Sadek, A. (2014) “Stochastic approach to assess a nitrate process-factor in soil water,” Ain Shams Engineering Journal, 5(2), pp. 315–320. Available at: https://doi.org/10.1016/j.asej.2013.10.006.
  • Eriksen, J. et al. (2015) “Nitrate leaching and residual effect in dairy crop rotations with grass–clover leys as influenced by sward age, grazing, cutting and fertilizer regimes,” Agriculture, Ecosystems & Environment, 212, pp. 75–84. Available at: https://doi.org/10.1016/j.agee.2015.07.001.
  • Eriksen, J. and Vinther, F.P. (2002) “Nitrate leaching in grazed grasslands of different composition and age,” in Multi-Function Grasslands: Quality Forages, Animal Products and Landscapes,” Proceedings of the 19th General Meeting of the European Grassland Federation, La Rochelle, France, 27–30 May 2002, pp. 682–683. Available at: https://orgprints.org/id/eprint/160/(Accessed: March 16, 2023).
  • Fajer, M. (2014) Przewodnik do ćwiczeń z gleboznawstwa dla studentów I roku geografii [A guide to soil science exercises for first-year geography students]. Katowice: Wydawnictwo Uniwersytetu Śląskiego.
  • FAO (no date) CropWat. Rome: Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/landwater/databases-and-software/cropwat/en/ (Accessed: March 16, 2023).
  • Fotyma, M., Kęsik, K. and Pietruch, C. (2010) “Azot mineralny w glebach jako wskaźnik potrzeb nawozowych roślin i stanu czystości wód glebowo-gruntowych [Mineral nitrogen in soils as an indicator of the fertilization needs of plants and the cleanliness of soil and groundwater],” Nawozy i Nawożenie (Fertilizers and Fertilizaton), 38, pp. 5–80.
  • Gaines, T.P. and Gaines, S.T. (1994) “Soil texture effect on nitrate leaching in soil percolates,” Communications in Soil Science and Plant Analysis, 25(13–14), pp. 2561–2570. Available at: https://doi.org/10.1080/00103629409369207.
  • Geroy, I. et al. (2011) “Aspect influences on soil water retention and storage,” Hydrological Processes, 25(25), pp. 3836–3842. Available at: https://doi.org/10.1002/hyp.8281.
  • GUS (2020) Użytkowanie gruntów i powierzchnia zasiewów w 2019 roku [Land use and sown area in 2019]. Warszawa: Główny Urząd Statystyczny. Available at: (Accessed: March 16, 2023).
  • Haberle, J. et al. (2009) “The changes of soil mineral nitrogen observed on farms between autumn and spring and modelled with a simple leaching equation,” Soil and Water Research, 4(4), pp. 159–167. Available at: https://doi.org/10.17221/7/2009-swr.
  • Haberle, J. et al. (2018) “Distribution of mineral nitrogen in soil in relation to risk of nitrate leaching in farms with irrigated vegetables and early potatoes,” Journal of Horticultural Research, 26(2), pp. 47–54. Available at: https://doi.org/10.2478/johr-2018-0015.
  • IMGW-PIB (no date) Dane publiczne IMGW-PIB [Public data IMGW-PIB]. Warszawa: Instytut Meteorologii i Gospodarki Wodnej – Państwowy Instytut Badawczy. Available at: https://danepubliczne.imgw.pl/ (Accessed: March 16, 2023).
  • IUNG (1983) Metody badań laboratoryjnych w stacjach chemiczno-rolniczych. Cz. IV. Badania gleb, ziem i podłoży spod warzyw i kwiatów oraz części wskaźnikowych roślin w celach diagnostycznych [Laboratory test methods in chemical and agricultural stations. Part IV. Research of soils, ground and substrates under vegetables and flowers as well as indicator parts of plants for diagnostic purposes]. Puławy: Instytut Uprawy, Nawożenia i Gleboznawstwa.
  • Jarvis, S.C. and Barraclough, D. (1991) “Variation in mineral nitrogen under grazed grassland swards,” Plant and Soil, 138(2), pp. 177–188. Available at: https://doi.org/10.1007/bf00012244.
  • Jurczuk, S. et al. (2004) Nawadnianie podsiąkowe jako podstawa zwiększenia retencji wodnej małych dolin rzecznych [Underseepage irrigation as a basis for increasing the water retention of small river valleys]. Falenty: Wydawnictwo IMUZ.
  • Kelliher, F.M. et al. (2014) “Effect of temperature on dicyandiamide (DCD) longevity in pastoral soils under field conditions,” Agriculture, Ecosystems & Environment, 186, pp. 201–204. Available at: https://doi.org/10.1016/j.agee.2014.01.026.
  • Khanif, Y.M., Cleemput van, O. and Baert, L. (1984) “Evaluation of the Burns model for nitrate movement in wet sandy soils,” The Journal of Soil Science, 35(4), pp. 511–518. Available at: https://doi.org/10.1111/j.1365-2389.1984.tb00608.x.
  • Klaus, V.H. et al. (2020) “Drought boosts risk of nitrate leaching from grassland fertilisation,” Science of The Total Environment, 726, 137877. Available at: https://doi.org/10.1016/j.scitotenv.2020.137877.
  • Li, H. et al. (2022) “Soil texture controls added organic matter mineralization by regulating soil moisture—evidence from a field experiment in a maritime climate,” Geoderma, 410, 115690. Available at: https://doi.org/10.1016/j.geoderma.2021.115690.
  • Lipińska, H. et al. (2021) “Quantification and comparison of ecosystem services of grasslands versus another fodder crop (maize) based on mineral nitrogen content in the 60–90 cm soil layer,” Agronomy Science, 76(4), pp. 63–78. Available at: https://doi.org/10.24326/as.2021.4.5.
  • Li, X., Chang, S.X. and Salifu, K.F. (2014) “Soil texture and layering effects on water and salt dynamics in the presence of a water table: A review,” Environmental Reviews, 22(1), pp. 41–50. Available at: https://doi.org/10.1139/er-2013-0035.
  • Lord, E. et al. (2007) “Investigating the effectiveness of NVZ Action Programme measures: Development of a strategy for England,” Report for Defra project, NIT18. Available at: https://www.researchgate.net/publication/242550191_Investigating_the_effectiveness_of_NVZ_Action_Programme_measures_Development_of_a_strategy_for (Accessed: March 16, 2023).
  • Lord, E.I., Anthony, S.G. and Goodlass, G. (2002) “Agricultural nitrogen balance and water quality in the UK,” Soil Use and Management, 18(4), pp. 363–369. Available at: https://doi.org/10.1111/j.1475-2743.2002.tb00253.x.
  • Lu, J. et al. (2019) “Accumulation and leaching of nitrate in soils in wheat-maize production in China,” Agricultural Water Management, 212, pp. 407–415. Available at: https://doi.org/10.1016/j.agwat.2018.08.039.
  • Magesan, G.N., Scotter, D.R. and White, R. (1999) “The utility of Burns’s equation to describe solute movement through soil under various boundary and initial conditions,” European Journal of Soil Science, 50(4), pp. 649–656. Available at: https://doi.org/10.1046/j.1365-2389.1999.00262.x.
  • Maheswaran, S. et al. (2022) “Effects of sheep grazing systems on water quality with a focus on nitrate leaching,” Agriculture, 12(6), 758. Available at: https://doi.org/10.3390/agriculture12060758.
  • Manns, H.R., Parkin, G. and Martin, R.C. (2016) “Evidence of a union between organic carbon and water content in soil,” Canadian Journal of Soil Science, 96(3), pp. 305–316. https://doi.org/10.1139/cjss-2015-0084.
  • Matus, F. and Rodríguez, J. (1994) “A simple model for estimating the contribution of nitrogen mineralization to the nitrogen supply of crops from a stabilized pool of soil organic matter and recent organic input,” Plant and Soil, 162(2), pp. 259–271. Available at: https://doi.org/10.1007/bf01347713.
  • Moreels, E. et al. (2003) “Simulating nitrate leaching in bare fallow soils: A model comparison,” Nutrient Cycling in Agroecosystems, 67(2), pp. 137–144. Available at: https://doi.org/10.1023/a:1025526802717.
  • Neve de, S. and Hofman, G. (1998) “N mineralization and nitrate leaching from vegetable crop residues under field conditions: A model evaluation,” Soil Biology & Biochemistry, 30(14), pp. 2067–2075. Available at: https://doi.org/10.1016/s0038-0717(98)00082-0.
  • Okruszko, H. (1988) “Zasady podziału gleb hydrogenicznych na rodzaje oraz łączenia rodzajów w kompleksy [Taxonomy of hydrogenic soils and joining them into soils complexes],” Roczniki Gleboznawcze – Soil Science Annual, 39(1) pp. 127–152.
  • Pélabon, C. et al. (2020) “On the use of the coefficient of variation to quantify and compare trait variation,” Evolution Letters, 4(3), pp. 180–188. Available at: https://doi.org/10.1002/evl3.171.
  • Pervanchon, F. et al. (2005) “A novel indicator of environmental risks due to nitrogen management on grasslands,” Agriculture, Ecosystems & Environment, 105(1–2), pp. 1–16. Available at: https://doi.org/10.1016/j.agee.2004.06.001.
  • Pietrzak, S. (2015) “Kształtowanie się stanu ilościowego azotu mineralnego w glebach organicznych pod użytkami zielonymi w Polsce [Formation of the quantitative state of mineral nitrogen in organic soils under grasslands in Poland],” Woda-Środowisko-Obszary Wiejskie, 15(2(50)), pp. 87–96.
  • Pietrzak, S. and Hołaj-Krzak, J. (2022) “The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration,” Journal of Water and Land Development, 54, pp. 68–76. Available at: https://doi.org/10.24425/jwld.2022.141556.
  • Pietrzak, S. and Urbaniak, M. (2023) “The relationship between the granulometric composition of grassland soils and their content of mineral nitrogen and organic carbon,” Journal of Water and Land Development, 57, pp. 69–77. Available at: https://doi.org/10.24425/jwld.2023.145337.
  • Plošek, L. et al. (2017) “Leaching of mineral nitrogen in the soil influenced by addition of compost and N-mineral fertilizer,” Acta Agriculturae Scandinavica Section B-soil and Plant Science, 67(7), pp. 607–614. Available at: https://doi.org/10.1080/09064710.2017.1322632.
  • Rath, S. et al. (2021) “Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida,” Agricultural Water Management, 246, 106634. Available at: https://doi.org/10.1016/j.agwat.2020.106634.
  • Rawls, W.J., Brakensiek, D.L. and Saxtonn, K.E. (1982) “Estimation of soil water properties,” Transactions of the ASAE, 25(5), pp. 1316–1320. Available at: https://doi.org/10.13031/2013.33720.
  • Roelsma, J. (2002) “Nitrate leaching versus residual soil mineral nitrogen,” in H.F.M. ten Berge (ed.). A review of potential indicators for nitrate loss from cropping and farming systems in the Netherlands. Wageningen: Wageningen University & Research pp. 105–118.
  • Ruijter de, F.J. et al. (2007) “Nitrate in upper groundwater on farms under tillage as affected by fertilizer use, soil type and ground-water table,” Nutrient Cycling in Agroecosystems, 77(2), pp. 155–167. Available at: https://doi.org/10.1007/s10705-006-9051-9.
  • Salazar, O. et al. (2014) “Monitoring of nitrate leaching during flush flooding events in a coarse-textured floodplain soil,” Agricultural Water Management, 146, pp. 218–227. Available at: https://doi.org/10.1016/j.agwat.2014.08.014.
  • Santos, C. and Dias, C. (2021) “Note on the coefficient of variation properties,” Brazilian Electron Journal of Mathematics, 2, pp. 1–12. Available at: https://doi.org/10.14393/BEJOM-v2-n4-2021-58062.
  • Schröder, J.J. et al. (2010) “Nitrate leaching from cut grassland as affected by the substitution of slurry with nitrogen mineral fertilizer on two soil types,” Grass and Forage Science, 65(1), pp. 49–57. Available at: https://doi.org/10.1111/j.1365-2494.2009.00719.x.
  • Smit, H.P.J. et al. (2021) “Very low nitrogen leaching in grazed leyarable-systems in northwest Europe,” Agronomy, 11(11), 2155. Available at: https://doi.org/10.3390/agronomy11112155.
  • Tampere, M. et al. (2015) “The effect of fertilizer and N application rate on nitrogen and potassium leaching in cut grassland,” Zemdirbyste-Agriculture, 102(4), pp. 381–388. Available at: https://doi.org/10.13080/z-a.2015.102.048.
  • Tonhauzer, K. et al. (2020) “Estimation of N 2O emissions from agricultural soils and determination of nitrogen leakage,” Atmosphere, 11(6), 552. Available at: https://doi.org/10.3390/atmos11060552.
  • Vogeler, I. et al. (2020) “Marginal nitrate leaching around the recommended nitrogen fertilizer rate in winter cereals,” Soil Use and Management, 38(1), pp. 503–514. Available at: https://doi.org/10.1111/sum.12673.
  • Wachendorf, M. et al. (2004) “Performance and environmental effects of forage production on sandy soils. II. Impact of defoliation system and nitrogen input on nitrate leaching losses,” Grass and Forage Science, 59(3), 307. Available at: https://doi.org/10.1111/j.1365-2494.2004.00430.x.
  • Walczak, R., Rovdan, E. and Witkowska-Walczak, B. (2002) “Water retention characteristics of peat and sand mixtures,” International Agrophysics, 16(2), pp. 161–165. Available at: http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2002_16_2_161.pdf (Accessed: May 12, 2023).
  • Wey, H. et al. (2021) “Field-scale monitoring of nitrate leaching in agriculture: Assessment of three methods,” Environmental Monitoring and Assessment, 194, 4. Available at: https://doi.org/10.1007/s10661-021-09605-x.
  • Widowati, L.R. and Neve de, S. (2017) “Nitrogen dynamics and nitrate leaching in intensive vegetable rotations in highlands of Central Java, Indonesia,” Journal of Tropical Soils 21(2), pp. 67–78. Available at: https://doi.org/10.5400/jts.2016.v21i2.67-78.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-834090e9-8af2-4139-ad3b-d416336a7db1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.