PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Risk management tool to support spoil dumps revitalization

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Narzędzie do zarządzania ryzykiem wspierające rewitalizację zwałowisk pogórniczych
Języki publikacji
EN
Abstrakty
EN
The paper features the results of Łukasiewicz - EMAG’s team work within the SUMAD project. The focus has been put on how to use the developed SUMAD Risk Management Tool (SUMAD RMT) which supports the revitalization process of a post-mining heap. The tool enables the following: • to identify and reduce risk factors related to the heap and to the revitalization process, • to estimate financially the revitalization process, • to monitor non-financial like political, environmental, social, etc. factors which are very important because they can positively or negatively shape the social and political reception of the whole revitalization process. The paper describes shortly the methodology based on three pillars (three kinds of analyses): • RRA - Risk Reduction Assessment (risk management), • CBA - Cost-Benefit Assessment (estimation of financial factors), • QCA - Qualitative Criteria Assessment (estimation of non-financial factors). The methodology has an iterative character and its main steps are the following: 1. Identification of the heap to be revitalized and preliminary revitalization activities, 2. Preliminary RRA, CBA, QCA analyses, 3. Composing the revitalization alternatives, 4. Alternative assessment with respect to risk (RRA), financial (CBA) and non-financial (QCA) factors, 5. Decision making based on the acquired aggregated data. The methodology was illustrated by examples from the revitalization process.
PL
Artykuł przedstawia wyniki pracy zespołowej w Instytucie Łukasiewicz - EMAG w ramach projektu SUMAD. Skupiono się na wykorzystaniu opracowanego Narzędzia Zarządzania Ryzykiem SUMAD (SUMAD RMT), które wspomaga proces rewitalizacji hałdy pogórniczej. Narzędzie to umożliwia: • rozpoznanie i ograniczenie czynników ryzyka związanych z hałdą i procesem rewitalizacji, • finansowe oszacowanie procesu rewitalizacji, • monitorowanie czynników pozafinansowych, które są bardzo ważne, ponieważ mogą pozytywnie lub negatywnie kształtować odbiór społeczny i polityczny całego procesu rewitalizacji. W artykule pokrótce opisano metodykę opartą na trzech filarach (trzy rodzaje analiz): • RRA - Ocena Redukcji Ryzyka (zarządzanie ryzykiem), • CBA - Ocena Kosztów i Korzyści (oszacowanie czynników finansowych), • QCA - Ocena Kryteriów Jakościowych (oszacowanie czynników pozafinansowych). Metodologia ma charakter iteracyjny, a jej główne etapy są następujące: 1. Identyfikacja hałdy przeznaczonej do rewitalizacji oraz wstępne działania rewitalizacyjne, 2. Analizy wstępne RRA, CBA, QCA, 3. Tworzenie i analiza alternatywnych rozwiązań rewitalizacyjnych, 4. Ocena alternatywnych rozwiązań w odniesieniu do czynników ryzyka (RRA), finansowych (CBA) i niefinansowych (QCA), 5. Podejmowanie decyzji w oparciu o zebrane zagregowane dane. Metodykę zilustrowano przykładami z procesu rewitalizacji.
Rocznik
Strony
35--42
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Łukasiewicz Research Network - Institute of Innovative Technologies EMAG, Katowice, Poland
Bibliografia
  • [1] Bialas, A. Towards a Software Tool Supporting Decisions in Planning Heap Revitalization Processes. Sustainability 2022, 14, 2492. https://doi.org/10.3390/su14052492
  • [2] ValueSec. Available online: https://cordis.europa.eu/project/rcn/97989/factsheet/en (accessed on 11 December 2021)
  • [3] CIRAS. Available online: http://cirasproject.eu/ (accessed on 11 December) 2021)
  • [4] U.S. Environmental Protection Agency (EPA). Mine Site Cleanup for Brownfields Redevelopment - A Three-Part Primer; EPA: Washington DC, USA, 2005. Available online: https://semspub.epa.gov/work/HQ/718145.pdf (accessed on 29 January 2022)
  • [5] Crumbling, D.M. Summary of the Triad Approach; U.S. Environmental Protection Agency (EPA): Washington, DC, USA, 2004
  • [6] Fargašová, A. Ecological Risk Assessment Framework. Acta Environ. Univ. Comenianae 2016, 24, 10-16. https://doi. org/10.1515/aeuc-2016-0002
  • [7] Kowalska, A.; Grobelak, A.; Kacprzak, M.; Lyng, A. Methods and tools for environmental technologies risk evaluation: The principal guidelines - A review. Int. J. Environ. Sci. Technol. 2021, 18, 1683-1694. https://doi.org/10.1007/s13762-020-02979-4
  • [8] Zhu, Y.; Shi, L.; Hipel, K.W. A. The Identification of Risk Factors in Brownfield Redevelopment: An Empirical Study. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics, Seoul, Korea, 14-17 October 2012. https://doi.org/10.1109/ICSMC.2012.6378107
  • [9] Mahammedi, C.; Mahdjoubi, L.; Booth, C.A.; Butt, T.E. Framework for preliminary risk assessment of brownfield sites. Sci. Total Environ. 2022, 807, 25-33. https://doi.org/10.1016/j.scitotenv.2021.151069
  • [10] Chen, S.; Chen, B.; Fath, B.D. Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives. Ecol. Model. 2013, 250, 25-33
  • [11] Power, M.; McCarty, L.S. Trends in the Development of Ecological Risk Assessment and Management Frameworks. Hum. Ecol. Risk Assess. 2002, 8, 7-18
  • [12] Hope, B.K. An examination of ecological risk assessment and management practices. Environ. Int. 2006, 32, 983-995
  • [13] Glenn, W.; Sutter, I.I. Ecological Risk Assessment, 2nd ed.; CRC Press Taylor & Francis Group: London, UK, 2019
  • [14] Gruiz, K.; Meggyes, T.; Fenyvesi, E. (Eds.). Engineering Tools for Environmental Risk Management: 4. Risk Reduction Technologies and Case Studies; CRC Press Taylor & Francis Group: London, UK, 2019
  • [15] SMARTe Web Page. Available online: http://www.neptuneinc.org/smarte (accessed on 11 December 2021)
  • [16] Swedish Geotechnical Society. Risk Management in Geotechnical Engineering Projects - Requirements. Methodology; SGF Report 1:2014E (English Version, Translated in 2017); SGF: Linköping, Sweden, 2017
  • [17] Sondermann, W.; Kummerer, C. Geotechnical opportunity management-subsoil conditions as an opportunity and a risk. In Proceedings of the XVI Danube-European Conference on Geotechnical Engineering, Skopje, Republic of Macedonia, 7-9 June 2018; pp. 395-400
  • [18] Mishra, R.K.; Janiszewski, M.; Uotinen, L.K.T.; Szydlowska, M.; Siren, T.; Rinne, M. Geotechnical Risk Management Concept for Intelligent Deep Mines. Procedia Eng. 2017, 191, 361-368
  • [19] Vega, A.; Argus, R.; Stockton, T.; Black, P.; Black, K.; Stiber, N. SMARTe: An MCDA Approach to Revitalize Communities and Restore the Environment. In Decision Support Systems for Risk-Based Management of Contaminated Sites; Marcomini, A., Suter, G., Critto, A., Eds.; Springer: Boston, MA, USA, 2009. https://doi.org/10.1007/978-0-387-09722-0_9
  • [20] Mikhailov, V.; Koryakov, A.; Mikhailov, G. Ecological risk management in coal mining and processing. J. Min. Sci. 2015, 51, 930-936
  • [21] Keyvanfar, A.; Shafaghat, A.; Mohamad, S.; Abdullahi, M.M.; Ahmad, H.; Mohd Derus, N.H.; Khorami, M. A Sustainable Historic Waterfront Revitalization Decision Support Tool for Attracting Tourists. Sustainability 2018, 10, 215. https:// doi.org/10.3390/su10020215
  • [22] Khumpaisal, S.; Chen, Z.; Mulliner, E. A New Approach to assess risks in Urban Regeneration Project. In Proceedings of the 3rd International Academic Consortium for Sustainable Cities Symposium, At Faculty of Architecture and Planning, Thammasat University, Bangkok, Thailand, 15th June 2012. https://doi.org/10.13140/RG.2.1.3471.2802
  • [23] Sobotka, A.; Radziejowska, A. Risk Analysis in the Realization of Buildings in Revitalized Areas. Arch. Civil Eng. J. Pol. Acad. Sci. 2019, 3, 113-126
  • [24] Pavloudakis, F.; Roumpos, C.; Karlopoulos, E.; Koukouzas, N. Sustainable Rehabilitation of Surface Coal Mining Areas: The Case of Greek Lignite Mines. Energies 2020, 13, 3995. https://doi.org/10.3390/en13153995
  • [25] Spanidis, P.-M.; Roumpos, C.; Pavloudakis, F. A Multi-Criteria Approach for the Evaluation of Low Risk Restoration Projects in Continuous Surface Lignite Mines. Energies 2020, 13, 2179. https://doi.org/10.3390/en13092179
  • [26] Uberman, R.; Ostręga, A. Applying the Analytic Hierarchy Process in the Revitalisation of Post-mining Areas Field. The 8th International Symposium on the Analytic Hierarchy Process for Multi-criteria Decision Making (ISAHP), Honolulu, Hawaii, July 8-10, 2005. In: Levy, J.; Saaty, R. (Eds): Proceedings of the International Symposium on the Analytic Hierarchy Process, Creative Decisions Foundation on behalf of the International Symposium on the Analytic Hierarchy Process, Pittsburgh, USA, 2005
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-833fa9f1-fc1b-4810-a93a-a865ba64673a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.