PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and activity evaluation of Ce-Mn-Cu mixed oxide catalyst for selective oxidation of co in automobile engine exhaust: effect of Ce/Mn loading content on catalytic activity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of Mn-doped CeO2-CuO catalyst (CeO2-MnOx-CuO) (Ce/Mn molar ratio of 0.5, 1.0 2.0 and 3.0) were prepared using co-precipitation method for the selective oxidation of CO in automobile engine exhaust. The content of copper was 5.0 wt. % in each sample. Catalysts were installed on the automobile engine exhaust and CO amount was recorded with help of CO sensor, with and without the catalyst. The catalytic converter efficiency was estimated for each catalyst through efficiency formula. It was observed that Ce/Mn catalyst with a molar ratio of 2.0 shows the maximum efficiency (88.35%). Stability of conversion process was analyzed by plotting the CO amount with respect to time. The catalyst with Ce/Mn molar ratio of 2.0 performed the most streamline conversion process with least deviations.
Twórcy
autor
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
  • University of Engineering and Technology, MS Metallurgy and Materials Engineering, 47080 Taxila, Pakistan
Bibliografia
  • 1. Gómez, L.E., et al., Co/ZrO 2 catalysts coated on cordierite monoliths for CO preferential oxidation. Applied Catalysis A: General, 2011. 401(1): p. 124–133.
  • 2. Qiao, D., et al., Preparation of Ce1− xFexO2 solid solution and its catalytic performance for oxidation of CH4 and CO. Journal of materials science, 2011. 46(10): p. 3500–3506.
  • 3. Varghese, S., et al., CO oxidation and preferential oxidation of CO in the presence of hydrogen over SBA-15-templated CuO-Co 3 O 4 catalysts. Applied Catalysis A: General, 2012. 443: p. 161–170.
  • 4. Weaver, E., J. Shiller, and A. Piken. Performance of monolithic catalysts in a vehicle field test. in AIChE Symp. Ser. 1976.
  • 5. Morales, M.R., F.N. Agüero, and L.E. Cadus, Catalytic Combustion of n-Hexane Over Alumina Supported Mn–Cu–Ce Catalysts. Catalysis letters, 2013. 143(10): p. 1003–1011.
  • 6. Li, Y., et al., Effect of Sodium on the Catalytic Properties of VO x/CeO2 Catalysts for Oxidative Dehy-drogenation of Methanol. The Journal of Physical Chemistry C, 2013. 117(11): p. 5722–5729.
  • 7. Zhao, F., et al., Effect of the loading content of CuO on the activity and structure of CuO/Ce- Mn-O catalysts for CO oxidation. Journal of Rare Earths, 2015. 33(6): p. 604–610.
  • 8. Shinde, V.M. and G. Madras, Synthesis of nanosized Ce 0.85 M 0.1 Ru 0.05 O 2− δ (M= Si, Fe) solid solution exhibiting high CO oxidation and water gas shift activity. Applied Catalysis B: Environmental, 2013. 138: p. 51–61.
  • 9. Shinde, V.M. and G. Madras, Nanostructured Pd modified Ni/CeO 2 catalyst for water gas shift and catalytic hydrogen combustion reaction. Applied Catalysis B: Environmental, 2013. 132: p. 28–38.
  • 10. Wang, X., Y. Zheng, and J. Lin, Highly dispersed Mn–Ce mixed oxides supported on carbon nanotubes for low-temperature NO reduction with NH 3. Catalysis Communications, 2013. 37: p. 96–99.
  • 11. Drenchev, N., et al., Cooperative effect of Ce and Mn in MnCe/Al 2 O 3 environmental catalysts. Applied Catalysis B: Environmental, 2013. 138: p. 362–372.
  • 12. Li, J., et al., Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuO–CeO 2 catalysts. Applied Catalysis B: Environmental, 2011. 108: p. 72–80.
  • 13. Yang, Z., et al., CO oxidation over CuO catalysts supported on CeO2-ZrO2 prepared by microwave-assisted co-precipitation: The influence of CuO content. Journal of Rare Earths, 2014. 32(2): p. 117–123.
  • 14. Peng, P.-Y., et al., Facile preparation of hierarchical CuO–CeO 2/Ni metal foam composite for preferential oxidation of CO in hydrogen-rich gas. Chemical Engineering Journal, 2014. 251: p. 228–235.
  • 15. Faure faure.benjamin.n@gmail.com, B. and P. Alphonse, Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature. Applied Catalysis B: Environmental, 2016. 180: p. 715–725.
  • 16. Park, Y., et al., Surface treatment effects on CO oxidation reactions over Co, Cu, and Ni-doped and codoped CeO 2 catalysts. Chemical Engineering Journal, 2014. 250: p. 25–34.
  • 17. Lee, S.M., H.H. Lee, and S.C. Hong, Influence of calcination temperature on Ce/TiO 2 catalysis of selective catalytic oxidation of NH 3 to N 2. Applied Catalysis A: General, 2014. 470: p. 189–198.
  • 18. Liu, Z.-G., et al., Influence of calcination temperature on the structure and catalytic performance of CuOx-CoOy-CeO2 ternary mixed oxide for CO oxidation. Applied Catalysis A: General, 2013. 451: p. 282–288.
  • 19. Gu, Z., et al., Structure and catalytic property of CeO2-ZrO2-Fe2O3 mixed oxide catalysts for diesel soot combustion: Effect of preparation method. Journal of Rare Earths, 2014. 32(9): p. 817–823.
  • 20. Guo, X., J. Li, and R. Zhou, Catalytic performance of manganese doped CuO–CeO2 catalysts for selective oxidation of CO in hydrogen-rich gas. Fuel, 2016. 163: p. 56–64.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8339b078-eca0-42ab-bfd7-87747fe9cb08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.