Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The non-homogeneous and non-linear mechanical behaviour of concrete complicates the numerical simulations of its corresponding material model. The concrete damaged plasticity (CDP) model is one of the most popular constitutive models for concrete. State-of-the-art CDP material parameters are introduced in Abaqus documentation [1], Jankowiak and Łodygowski [2], and Hafezolghorani et al. [3]. Accordingly, this paper presents a novel comparative study of these commonly-used concrete CDP parameters by assessing the response of plain concrete specimens under quasi-static loading conditions. The research conducts standard laboratory tests: compressive strength test of a concrete cube and three-point flexural test of a plain concrete beam. Sophisticated non-linear computational models are built using Abaqus/CAE and analysed using Abaqus/Explicit solver. The results discuss and compare deformations, damage patterns, reaction forces, compressive strength, tensile stress and modulus of rapture. The thorough study concludes that choosing CDP parameters is case-dependant and should be selected carefully.
Czasopismo
Rocznik
Tom
Strony
157--181
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Structural Analysis, Poznan University of Technology Poznan, Poland
autor
- Institute of Structural Analysis, Poznan University of Technology Poznan, Poland
Bibliografia
- 1. Dassault Syst`emes, Abaqus 6.10 Verification Manual, Simulia Corp., Providence, RI, USA, 2010.
- 2. Jankowiak T., Łodygowski T., Identification of parameters of concrete damage plasticity constitutive model, Foundations of Civil and Environmental Engineering, 6(1): 53–69, 2005.
- 3. Hafezolghorani M., Hejazi F., Vaghei R., bin Jaafar M.S., Karimzade K., Simplified damage plasticity model for concrete, Structural Engineering International, 27(1): 68–78, 2018, doi: 10.2749/101686616X1081.
- 4. Adekeye A.W., Awoyera P., Strength characteristics of concrete beams reinforced with steel bars of equivalent area but different diameters, Research Journal of Applied Sciences, Engineering and Technology, 11(7): 765–769, 2015, doi: 10.19026/rjaset.11.2039.
- 5. Hillerborg A., Modeer ´ M., Petersson P-E., Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research, 6(6): 773–781, 1976, doi: 10.1016/0008-8846(76)90007-7.
- 6. Sumer ¨ Y., Aktas¸ M., Defining parameters for concrete damage plasticity model, Challenge Journal of Structural Mechanics, 1(3): 149–155, 2015, doi: 10.20528/cjsmec. 2015.07.023.
- 7. Tao Y., Chen J-F., Concrete damage plasticity model for modeling FRP-to-concrete bond behavior, Journal of Composites for Construction, 19(1): 04014026, 2014, doi: 10.1061/ (ASCE)CC.1943-5614.0000482.
- 8. Alongi A., Angelotti A., Mazzarella L., A numerical model to simulate the dynamic performance of Breathing Walls, Journal of Building Performance Simulation, 14(2): 155– 180, 2021, doi: 10.1080/19401493.2020.1868578.
- 9. Hillerborg A., The theoretical basis of a method to determine the fracture energy GF of concrete, Materials and Structures, 18(4): 291–296, 1985, doi: 10.1007/BF02472919.
- 10. Al-Rifaie H., Sumelka W., Numerical analysis of a reinforced concrete supporting structure for blast resistant gates, [in:] 23rd International Conference on Computer Methods in Mechanics PCM-CMM, Kraków, Poland 2019.
- 11. Al-Rifaie H., Sumelka W., Numerical analysis of reaction forces in blast resistant gates, Structural Engineering and Mechanics, 63(3): 347–359, 2017, doi: 10.12989/sem. 2017.63.3.347.
- 12. Al-Rifaie H., Studziński R., Gajewski T., Malendowski M., Peksa P., Sumelka W., Sielicki P.W., Full scale field testing of trapezoidal core sandwich panels subjected to adjacent and contact detonations, [in:] Giżejowski M.A., Kozłowski A., Chybiński M., Rzeszut K., Studziński R., Szumigała M. [Eds.], Modern Trends in Research on Steel, Aluminium and Composite Structures: Proceedings of the XIV International Conference on Metal Structures (ICMS2021), Poznań, Poland, 16–18 June 2021, London: Routledge 2021, pp. 393–399, doi: 10.1201/9781003132134.
- 13. Cuneyt Aydin ¨ A., Tortum A., Yavuz M., Prediction of concrete elastic modulus using adaptive neuro-fuzzy inference system, Civil Engineering and Environmental Systems, 23(4): 295–309, 2007, doi: 10.1080/10286600600772348.
- 14. Al-Rifaie H., Sumelka W., Auxetic damping systems for blast vulnerable structures, [in:] Voyiadjis G.Z. [Ed.], Handbook of Damage Mechanics, pp. 1–23, Springer, New York, NY, 2020, doi: 10.1007/978-1-4614-8968-9 71-1.
- 15. Szczecina M., Winnicki A., Calibration of the CDP model parameters in Abaqus, The 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM15), Incheon, Korea, 2015.
- 16. Fedoroff A., Calonius K., Kuutti J., Behavior of the Abaqus CDP model in simple stress states, Rakenteiden Mekaniikka, 52(2): 87–113, 2019, doi: 10.23998/rm.75937.
- 17. Chaudhari S.V., Chakrabarti M., Modeling of concrete for nonlinear analysis using finite element code ABAQUS, International Journal of Computer Applications, 44(7): 14–18, 2012, doi: 10.5120/6274-8437.
- 18. Wahalathantri B., Thambiratnam D., Chan T., Fawzia S., A material model for flexural crack simulation in reinforced concrete elements using ABAQUS, [in:] Cowled C.J.L. [Ed.], Proceedings of the First International Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing, pp. 260–264, Queensland University of Technology, Australia, 2011.
- 19. Ren W., Sneed L.H., Yang Y., He R., Numerical simulation of prestressed precast concrete bridge deck panels using damage plasticity model, International Journal of Concrete Structures and Materials, 9(1): 45–54, 2015, doi: 10.1007/s40069-014-0091-2.
- 20. Farahmandpour C., Dartois S., Quiertant M., Berthaud Y., Dumontet H., A concrete damage–plasticity model for FRP confined columns, Materials and Structures, 50(2): 1–17, 2017, doi: 10.1617/s11527-017-1016-8.
- 21. Majed M.M., Tavakkolizadeh M., Allawi A.A., Finite element analysis of rectangular RC beams strengthened with FRP laminates under pure torsion, Structural Concrete, 22(4): 1946–1961, 2021, doi: 10.1002/suco.202000291.
- 22. Othman H., Marzouk H., Applicability of damage plasticity constitutive model for ultrahigh performance fibre-reinforced concrete under impact loads, International Journal of Impact Engineering, 114: 20–31, 2018, doi: 10.1016/j.ijimpeng.2017.12.013.
- 23. Banyhussan Q.S., Yıldırım G., Anıl O., ¨ Erdem R.T., Ashour A., S¸ahmaran M., Impact resistance of deflection-hardening fiber reinforced concretes with different mixture parameters, Structural Concrete, 20(3): 1036–1050, 2019, doi: 10.1002/suco.201800233.
- 24. Kakavand M.R.A., Taciroglu E., An enhanced damage plasticity model for predicting the cyclic behavior of plain concrete under multiaxial loading conditions, Frontiers of Structural and Civil Engineering, 14(6): 1531–1544, 2020, doi: 10.1007/s11709-020-0675-7.
- 25. Plos M., Gylltoft K., Evaluation of shear capacity of a prestressed concrete box girder bridge using non-linear FEM, Structural Engineering International, 16(3): 213–221, 2006, doi: 10.2749/101686606778026457.
- 26. Lubliner J., Oliver J., Oller S., Ońate E., A plastic-damage model for concrete, International Journal of Solids and Structures, 25(3): 299–326, 1989, doi: 10.1016/0020- 7683(89)90050-4.
- 27. Lee J., Fenves G.L., Plastic-damage model for cyclic loading of concrete structures, Journal of Engineering Mechanics, 124(8): 892–900, 1998, doi: 10.1061/(ASCE)0733- 9399(1998)124:8(892).
- 28. Malm R., Shear cracks in concrete structures subjected to in-plane stresses, Licentiate dissertation, KTH Royal Institute of Technology, Sweden 2006, http://urn.kb.se/resol ve?urn=urn:nbn:se:kth:diva-4215.
- 29. Fedoroff A., Calonius K., Using the Abaqus CDP model in impact simulations, Rakenteiden Mekaniikka, 53(3): 180–207, 2020, doi: 10.23998/rm.79723.
- 30. Dassault Syst`emes, Abaqus Analysis User Manual, Vol. 4, Simulia Corp. Providence, RI, USA, 2007.
- 31. Al-Rifaie H., Application of passive damping systems in blast resistant gates, PhD Thesis, Poznan University of Technology, Poznan, 2019.
- 32. Loven´ J., Svavarsdóttir E.S., Concrete beams subjected to drop weight impactcomparison of experimental data and numerical modelling, Master’s Thesis in the Master’s Programme Structural Engineering and Building Technology, Chalmers University of Technology, G¨oteborg, Sweden, 2016.
- 33. CEN-EN 12390-1, Testing hardened concrete – Part 1: Shape, dimensions and other requirements for specimens and moulds, European Committee for Standardization, 12 pages, 2021.
- 34. Talaat A., Emad A., Tarek A., Masbouba M., Essam A., Kohail M., Factors affecting the results of concrete compression testing: A review, Ain Shams Engineering Journal, 12(1): 205–221, 2021, doi: 10.1016/j.asej.2020.07.015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8335fd99-4063-4798-8854-32a6c84a2759
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.