PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Condition monitoring of induction motor bearing based on bearing damage index

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rolling element bearings are used broadly in many machinery applications. It is used to support the load and preserve the clearance between stationary and rotating machinery elements. Unfortunately, rolling element bearings are exceedingly prone to premature failures. Vibration signal analysis has been widely used in the faults detection of rotating machinery and can be broadly classified as being a stationary or non-stationary signal. In the case of the faulty rolling element bearing the vibration signal is not strictly phase locked to the rotational speed of the shaft and become “transient” in nature. The purpose of this paper is to briefly discuss the identification of an Inner Raceway Fault (IRF) and an Outer Raceway Fault (ORF) with the different fault severity levels. The conventional statistical analysis was only able to detect the existence of a fault but unable to discriminate between IRF and ORF. In the present work, a detection technique named as bearing damage index (BDI) has been proposed. The proposed BDI technique uses wavelet packet node energy coefficient analysis method. The well-known combination of Hilbert transform (HT) and Fast Fourier Transform (FFT) has been carried out in order to identify the IRF and ORF faults. The results show that wavelet packet node energy coefficients are not only sensitive to detect the faults in bearing but at the same time they are able to detect the severity level of the fault. The proposed bearing damage index method for fault identification may be considered as an ‘index’ representing the health condition of rotating machines.
Rocznik
Strony
105--119
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
autor
  • Department of Electrical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur-273 010, India
autor
  • Department of Electrical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur-273 010, India
Bibliografia
  • [1] Mehrjou M. R., Mariun N., Marhaban M. H., Rotor fault condition monitoring techniques for squirrel-cage induction machine - A review, Mech. Syst. Signal Process, no. 25, pp. 2827-2848 (2011).
  • [2] Wadhwani S., Gupta S. P., Kumar V., Wavelet based vibration monitoring for detection of faults in ball bearings of rotating machines, Journal Inst. Eng. (India)-EL, no. 86, pp. 77-81 (2005).
  • [3] Purushotham V., Narayanan S., Prasad S. A. N., Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition, NDT E Int., no. 38, pp. 654-664 (2005).
  • [4] Chandel A. K., Patel R. K., Bearing Fault Classification Based on Wavelet Transform and Artificial Neural Network, IETE Journal of Research, vol. 59, no. 3, pp. 219-225 (2013).
  • [5] Qin Y., Mao Y., Tang B., Vibration signal component separation by iteratively using basis pursuit and its application in mechanical fault detection, J. Sound Vib., no. 332, pp. 5217-5235 (2013).
  • [6] Djebala A., Ouelaa N., Detection of rolling bearing defects using discrete wavelet analysis, pp. 339-348 (2008).
  • [7] Gao R.X., Yan R., Non-stationary signal processing for bearing health monitoring, Int. J. of Manufacturing Research, vol. 1, no. 1, pp. 18-40 (2006).
  • [8] Gouda Kareem M., Joshua Tarbutton A., Hassan M. A. et al., A wavelet-based index for fault detection and its application in condition monitoring of helicopter drive-train components, Int. J. of Manufacturing Research, vol. 10, no.1, pp. 87-106 (2015).
  • [9] Randall R., Antoni J., Rolling element bearing diagnostics–A tutorial, Mech. Syst. Signal Process, no. 25, pp. 485-520 (2011).
  • [10] Changting W., Gao R. X., Ruqiang Y., Malhi A., Rolling bearing defect severity assessment under varying operating conditions, Int. J. of Manufacturing Research, vol. 4, no. 1, pp. 37-56 (2009).
  • [11] Wadhwani S., Gupta S. P., Kumar V., Fault Classification for Rolling Element Bearing in Electric Machines, IETE J. Res. 54 (2011).
  • [12] Cabal-Yepez E., Romero-Troncoso R. J., Garcia-Perez A., Osornio-Rios R.A., Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors, Electr. Pow. Syst. Res, vol. 89, pp. 64-69 (2012).
  • [13] Choudary A., Tondon N., Vibration response of rolling element bearings in a rotor bearing system to a local defect under radial load, Transactions of ASME, vol. 128, pp. 252-61(2006).
  • [14] Sreejith B., Verma A. K., Srividya A., Fault diagnosis of rolling element bearing using time-domain features and neural networks, IEEE Region 10 Colloquium and the Third ICIIS, Kharagpur, India, pp. 6-11 (2008).
  • [15] Miao Q., Wang D., Huang H. Z., Identification of characteristic components in frequency domain from signal singularities, Rev. Sci. Instrum, 81: 035113 (2010).
  • [16] Nikolaou N.G., Antoniadis I.A., Rolling element bearing fault diagnosis using wavelet packets, NDT & E International, vol. 35, pp. 197-205 (2002).
  • [17] Yen G. G., Lin K.-C., Wavelet Packet Feature Extraction for Vibration monitoring, Proceedings of the IEEE Conference on Control Applications, pp. 1573-1578 (1999).
  • [18] Powalka B., Dhupia J.S., Ulsoy A. G., Katz R., Identification of machining force model parameters from acceleration measurements, Int. J. of Manufacturing Research, vol. 3, no. 3, pp. 265-284 (2008).
  • [19] Hong H., Liang M., Fault severity assessment for rolling element bearings using the Lempel-Ziv complexity and continuous wavelet transform, Journal of Sound and Vibration, vol. 320, pp. 452-468 (2009).
  • [20] Case Western Reserve University, Bearing data center [online]: URL:http://www.eecs.cwru.edu/laboratory/bearing/download.htm, accessed 2011.
  • [21] Collacott R. A., Mechanical fault diagnosis and condition monitoring, London, Chapman and Hall (1977).
  • [22] Mathew J., Alfredson R. J., The condition monitoring of rolling element bearings using vibration analysis, Journal of Vibration, Acoustics Stress and Reliability in Design, vol. 106, pp. 447-53 (1984).
  • [23] Pachaud C., Salvetat R., Fray C., Crest factor and kurtosis contributions to identify defects inducing periodical impulsive forces, Mechanical Systems and Signal Processing, vol. 11, pp. 903-916 (1997).
  • [24] Heng R. B. W., Nor M. J. M., Statistical Analysis of Sound and Vibration Signals for Monitoring Rolling Element Bearing Condition, Applied Acoustics, vol. 53, pp. 211-226 (1998).
  • [25] McFadden P. ., Smith J. D., Vibration monitoring of rolling element bearings by the high frequency resonance technique-a review, Tribology International, vol. 17, pp. 3-10 (1984).
  • [26] Wowk V., Machinery Vibration Measurement and Analysis, McGraw-Hill, New York (1991).
  • [27] Liu Q., Chen F., Zhou Z., Wei Q., Fault Diagnosis of Rolling Bearing Based on Wavelet Package Transform and Ensemble Empirical Mode Decomposition, (2013).
  • [28] Wang D., Zhang W., Fault diagnosis study of ball bearing based on wavelet packet transform, China Mechanical Engineering, vol. 23, no. 3, pp. 295-298 (2012).
  • [29] Jiang F., Li W., Wang Z., Zhu Z., Fault Severity Estimation of Rotating Machinery Based on Residual Signals, Adv. Mech. Eng., vol. 2012, pp. 1-8 (2012).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-833450fe-35db-4dd4-ac01-0c6084c6ae23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.