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 A B S T R A C T  

In this paper, the problem of tool wear prediction during milling of hard-to-cut 
metal matrix composite Duralcan™ was presented. The conducted research 
involved the measurements of acceleration of vibrations during milling with 
constant cutting conditions, and evaluation of the flank wear. Subsequently, the 
analysis of vibrations in time and frequency domain, as well as the correlation of 
the obtained measures with the tool wear values were conducted. The validation 
of tool wear diagnosis in relation to selected diagnostic measures was carried out 
with the use of one variable and two variables regression models, as well as with 
the application of artificial neural networks (ANN). The comparative analysis of 
the obtained results enabled the selection of the most effective tool wear 
prediction method. 
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1. INTRODUCTION 
1.1. Characteristics of metal matrix composites MMCs 
 

Metal matrix composites (MMCs) with their unique 
physical, mechanical and chemical properties are being 
widely applied in aerospace and automotive industries. Metal 
Matrix Composites are materials which consist of alloy 
metals’ matrix reinforced with ceramic particles, i.e. 
SiC or Al203 [5]. Because of high mechanical properties, MMCs 
are classified as difficult-to-cut. The reinforcement in a form 
of ceramic particles increases strength, hardness and 
abrasive wear resistance, which consequently gives an 

advantage in relation to non-reinforced aluminum alloys  
[2,3,6]. 

The unique properties of MMCs allow the 
competitiveness with heat-resistant super alloys. The 
reinforcing of material with ceramic particles enables the 
obtainment of improved ductility, comparing to fiber 
reinforced metal composites [3]. 

The most popular MMCs are aluminum alloys reinforced 
with ceramic particles, e.g. Duralcan™, which is the composite 

based on aluminum cast alloys reinforced with silicon 
carbide [1]. This material has found its application in 
automotive, rail and aerospace industries. The exemplary 
parts made of Duralcan™ composite include: brake discs, 
brake calipers, brake pads, brackets, oil sump or elements of 
steering system. Moreover, the high thermal stability of 
Duralcan™ castings allows to use as housing of lasers [11]. 

Machining of MMCs introduces the difficulties because of 
hard silicon carbide content, which improves the exploitation 
properties of composite, however from the other side, it 
simultaneously contribute to the rapid tool wear [2,4]. The 
ceramic inclusions are harder than tungsten carbide and 
other materials which are being intended to cutting tools. 
When the cutting edge during machining is contacted with 
hard ceramic particles, then micro chipping of the tool can 
occur [12]. 

 

1.2. Diagnostics of machining process 

 
The primary objective of machining technology is the 

maintaining of high and constant quality together with 
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minimization of costs. One of the factors, which directly affect 
the machining requirements are machine stoppage times. 
Thus, their minimization is of high importance [8]. Because 
of high quality requirements, the cutting tools are very often 
being changed, which consequently elongates the stoppage 
times. Therefore, the efficient diagnosis of a machining is 
essential in order to the process enhancement. In a range of a 
machining technology, three areas of diagnostics can be 
distinguished: diagnosis of tool condition, diagnosis of 
machine’s technical condition and diagnosis of workpiece 
quality. During the diagnosis of machining process, the 
information about the tool wear or its catastrophic failure is 
usually important [7]. 

Diagnosis of machining is mainly focused on the detection 
of tool wear extent. The application of various phenomena 
connected with machining allows the diagnosis of cutting 
tool. It is based on the measurement of signals, which are 
connected with the tool wear, i.e. the growth of cutting force, 
acoustic emission (AE), mechanical vibrations, temperature 
or noise level.  

The prediction of tool wear is a complex problem, 
especially when the cutting conditions are variable. However 
the growing development of monitoring systems enables the 
improved assessment.  

Currently, the advanced signal processing methods are 
being applied, which allow the determination of measures 
connected with many types of signals and simultaneously the 
selection of measures applicable to diagnostics [7]. 

In the area of machining process diagnostics, the 
diagnostic inference methods are based on the pseudo-
deterministic model. However, during the tool condition 
diagnosis, the fundamental methods are based on the 
regression and pattern recognition approaches [10]. 

Neural networks, as the one of pattern recognition 
methods, reach the growing interest because of their 
elasticity, computational power and simplicity of use. With 
the use of this modeling technique, the possibility of complex 
functions’ projection can be reached. The primary feature of 
neural networks is automatic learning on the basis of data 
introduced by the user. As a consequence, it leads to 
generation of the searched model by the network itself.  

The primary and the most frequently applied neural 
network is multi-layered perceptron (MLP). Based on 
neuron’s inputs, the mean weighted value is being calculated, 
with the use of transmittance function and given in a form of 
a result at the output of the network. Multi-layered 
perceptron is a simple model with the input and output, and 
appropriately selected weights [9].   

Because of high reliability, the neural networks are being 
applied to machining process diagnosis, and the most 
frequently: to tool wear diagnosis. On the basis of many 
researches one can observe that the most popular network is 
multi-layered perceptron, which application gives the 
satisfactory results.  

 
2. EXPERIMENTAL DETAILS 
2.1. Research range 

 
The objective of research involved the diagnosis of tool 

condition, based on the measurement of vibrations during 
end milling of MMC.  

The Duralcan™ metal matrix composite has been selected 
as a workpiece. The reinforcement of aluminum alloy with 

the hard SiC particles (approx.10 %) allowed the 
improvement of mechanical properties together with 
improved abrasion resistance.  

Figure 1 depicts the microstructure of the  workpiece. 
The MMC was obtained with the application of die casting.  

 

 
Fig. 1. The microstructure of MMC 

Table 1 depicts the chemical composition of the 
workpiece. 

The monolithic end mills MaxiMet™ by Kennametal were 
selected as the cutting tools (Fig. 2). They were made of fine-
grained tungsten carbide.  

 
Tab. 1.The chemical composition ofDuralcan™ 

Element Si Fe Cu Mg Ti Al 

[%] 
8,50 

– 
9,50 

0,20 
max 

0,20 
max 

0,45 
– 

0,65 

0,20 
max 

rest 

 
In order to check the repeatability of the measurements, 

the six identical 3-toothed mills were applied during the 
machining tests, conducted in the constant cutting 
conditions.  

 

 
Fig. 2. Monolithic end mill MaxiMet™ Kennametal 

 
The milling tests were conducted on AVIA FND-32F 

milling machine, with the cutting conditions presented in 
table 2. 

 
Tab. 2. Cutting conditions 

Rotational speed n [rev/min] 1400 
Cutting speed vc [m/min] 44 

Feed per tooth fz [mm/tooth] 0,02 
Feed rate vf [mm/min] 84 

Cutting path L [mm] 278 
Cutting depth ap [mm] 5 
Cutting width ae [mm] 0,5 
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2.2. Research method 
 
The measurements of accelerations of vibrations were 

carried out with the application of three-directional 
piezoelectric Brüel & Kjær 4321 sensor clamped to the 
machine’s fixture. The measurements were conducted in the 
following directions: X – feed direction Af, Y – feed normal 
direction AfN and Z – thrust direction Ap. 

The amplification and processing of signals acquired by 
the sensor was carried out with the use of Brüel & Kjær 
NEXUS 2692-C amplifier. Additionally, the A/D transducer 
located in a PC was applied. Figure 3 shows the experimental 
apparatus set-up. 

The analysis of the obtained signals was conducted with 
the application of the dedicated software. This program 
allowed the generation of vibration signals in time and 
frequency domain. The analysis involved the use of the 
following statistical measures: root mean square value Ai_RMS 

and peak value Ai_peak..  
After the measurement of vibrations during the one 

milling pass, the tool flank wear VBB on the tool’s rectilinear 
section was inspected with the use of microscope. The tool 
flank wear VBB was measured for three cutting edges of each 
tool. The value of the tool flank wear was averaged. The 
dullness criterion for the milling tool was equaled to VBB_gr = 
0,3 mm. 

 

 
Fig. 3. The set-up of experimental apparatus 

3. RESULTS AND DISCUSSION 
3.1. Analysis of tool wear 

 
Research results show the measured tool flank wear and 

the acceleration of vibrations generated during end milling of 
MMC.  

Figure 4 depicts tool flank wear VBB values in function of 
time for the all investigated end mills.  

 

 
Fig. 4. Tool flank wear in function of time for the investigated 

end mills 

 

In order to determine the relations between the tool wear 
VBB and cutting time, the power function has been 
selected: . On the basis of the determined 
equation, the average time needed for the excessing the 
critical tool wear value has been calculated as:ts_z= 11,44 min.  

The cutting tools which are recommended to machining 
of Duralcan™ composite are polycrystalline diamonds PCD, 
because of relatively high tool life, correlated with higher 
hardness of PCD in comparison to SiC reinforcing phase of 
MMC. Nevertheless in this work, the end mills made of 
tungsten carbide were applied, which are the typical and 
cheaper equivalent of PCD tools. The analysis of tool wear 
during the tests confirms that the tool life is significantly 
shorter than that reached for the PCD tools. The information 
provided by the Duralcan™ manufacturer reveals that the tool 
life obtained for the PCD tools is T ≈ 60 min, when the VBB_gr = 
0,3 mm. In case of tools made of tungsten carbide, the tool 
life reached for the same dullness criterion is T= 11,44 min 
and thus insufficient. However the conducted research was 
primarily focused on the evaluation of tool condition 
diagnosis, as well as the effectiveness of tool wear prognosis. 

 
3.2. Analysis of vibrations in time domain 

 
The measured vibrations signals were processed in 

„Analizator” software. The application of this program 
enabled the generation of vibrations time courses and 
subsequently the calculation of statistical measures.  

After the conducted tests, the tool wear values obtained 
after the each milling pass were correlated with measured 
accelerations of vibrations in the three directions. The 
designations of the selected statistical measures are as 
follows:  

 Af_RMS, Af_peak – root mean square and peak value of 
accelerations of vibrations measured in the feed 
direction (along the X axis), 
 AfN_RMS, AfN_peak - root mean square and peak value of 
accelerations of vibrations measured in the feed normal 
direction (along the Y axis), 
 Ap_RMS, Ap_peak- root mean square and peak value of 
accelerations of vibrations measured in the thrust 
direction (along the Z axis), 

Figure 5 shows the exemplary vibration chart in time 
domain. 

 

 
Fig.5. Vibration time course 

 
The analysis of vibration charts in time domain can be 

based on the comparison of amplitudes reached during 
milling with the new and worn tool. Typically, the growth of 
tool flank wear leads to the increase of vibration amplitudes. 
The inference based on vibration amplitude is not usually 
being applied, because of strong influence of other cutting 
conditions on the acquired vibration signals, e.g. the effect of 
cutting speed or spindle’s rotational speed, as well as the 
variations of machining system’s dynamical properties. 
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However, in case of constant cutting conditions, the 
evaluation of vibration amplitudes can be used as a tool wear 
symptom. 

On the basis of the obtained results, the relation between 
the tool wear VBB and specified vibration measure was 
determined. In order to present the results, the whole 
experimental series was taken into account.  

Figure 6 shows the exemplary chart containing the linear 
equation between the tool wear and vibrations:

. The conformity of the experimental results 

with the selected function can be described by the R2 
coefficient. 

 

 
Fig. 6. Relation between VBB and Ap_RMS 

3.3. Analysis of vibrations in frequency domain 
 
The subsequent symptom for evaluating the tool wear 

extent is vibration frequency spectrum. The application of 
„Analizator” software allowed the formulation of vibrations 
in frequency domain. 

On the basis of the generated charts, the tooth passing 
and tool revolution frequencies, as well as their harmonics 
were identified.  

Figure 7shows the exemplary vibration frequency 
spectrum generated in „Analizator” software. 

 

 
Fig. 7. The frequency spectrum for the vibrations in the thrust 

direction 

On the basis of the obtained results, the relations 
between the tool wear VBB and constituent corresponding to 
tooth passing frequency were obtained.  

Figure 8 shows the exemplary chart containing the linear 
function: .  

Formulation of diagnostic model allows the prognosis of 
tool wear values. The first developed diagnostic model was 
one based on one variable regression function. It is the open 
mathematical function, which determines the relations 
between the VBB tool wear indicator and specified measure 
of diagnostic signal. 

 
Fig. 8. Relation between VBB and Ap_fr 

3.4. Diagnostic inference based on one variable 
regression model  
 

The obtained function allows the determination of tool 
wear VBB expected value based on value of the diagnostic 
measure.  

The one variable regression model was described by the 
following mathematical function: . Tables 3 
and 4 summarize the determined functions with R2 
Coefficient. 

 
Tab. 3. One variable regression model for the measures 
determined in time domain  

Function CoefficientR2 

VBB = 0,03Af_RMS + 0,02 R² = 0,11 

VBB = 0,02Af_peak - 0,16 R² = 0,38 

VBB  = 0,01AfN_RMS  + 0,11 R² = 0,05 

VBB  = 0,01AfN_peak  - 0,06 R² = 0,26 

VBB  = 0,14Ap_RMS  - 0,27 R² = 0,91 

VBB = 0,03Ap_peak - 0,20 R² = 0,62 

 
Tab. 4. One variable regression model for the measures 
determined in frequency domain 

Function Coefficient R2 

VBB = 0,01Af_fr  + 0,17 R² = 0,06 

VBB = 0,10Af_2fr  + 0,05 R² = 0,48 

VBB = 0,01AfN_fr  + 0,15 R² = 0,10 

VBB= 0,08AfN_2fr  + 0,08 R² = 0,40 

VBB = 0,18Ap_fr  - 0,05 R² = 0,76 

VBB = 0,24Ap_2fr  + 0,13 R² = 0,12 

 
The R2 coefficient has been applied for the searching of 

the best diagnostic measure. The selection of the best 
measure is determined by the R2 value which should be as 
close as possible to 1. Tables 3 and 4 reveal that the most 
appropriate measures for the tool wear diagnosis are Ap_RMS 

and Ap_fr. The both measures are based on the vibration 
thrust direction.  

In order to validate the one variable regression model, 
the one of the end mills has been selected as the verifying 
tool. The values of the particular measures for the fifth end 
mill were not taken into account intentionally during the 
formulation of mathematical function. This 
approach aimed at validation of tool wear prognosis, based 
on completely new values, which have not been previously 
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considered as the input data during the formulation of 
function.  

In order to validate, the two best measures from the time 
and frequency domain were selected:  

Ap_RMS (R² = 0,91), Ap_peak (R² = 0,62) and Ap_fr (R² = 0,76), 
Af_2fr (R² = 0,48). 

Figure 9 shows the exemplary chart describing the 
dependencies between the value of tool wear VBB_rz 
measured during the milling tests with the verifying tool and 
the value determined on the basis of regression function for 
the specified diagnostic measure. In order to evaluate the 
error value, the e parameter, describing the conformity has 
been introduced. The mean square error was calculated on 
the basis of equation: 

 
   (1) 

 
where:  
N – number of data points, 
VBB_tei – predicted value, 
VBB_rzi– real value. 
 

 
Fig. 9. Relation between the real and predicted tool wear 

values for the Ap_fr measure 
VBB = 0,18Ap_fr  - 0,05 

 

On the basis of the Fig. 9 one can evaluate the efficiency of 
the specified diagnostic model. The best fitted model can be 
described by the function: VBB = 0,18Ap_fr  - 0,05. The 
calculated error between the real and predicted value is in 
this case the smallest (e = 0,0385). Based on the obtained 
results, one can note that not any of the measures can be 
applied to the tool wear prognosis, because the predicted 
values significantly differ from the expected value.  

The obtained error is acceptable and can be indicative of 
a good quality of the determined regression function.  

 
3.5. Diagnostic inference based on two variables 

regression model 
 
The next diagnostic inference method during the research 

was multivariate regression model. During this approach the 
tool wear value is being determined with the use of a many 
measures (from one or more signals). In order to formulate 
the model, the „Statistica” software has been applied. The 
regression function in the form of second order polynomial 
was used. The selection of the two best measures was based 
on the evaluation of R 2coefficient, similarly to the approach 
with the one variable regression model.  

Table 5 depicts various configurations of measures and 
second order polynomial equations for the each model.  

The exemplary two variables regression model, generated 
in „Statistica” software is presented in Figure 10. 

Subsequently, the dependency between the value of tool 
wear VBB_rz measured during the milling tests with the 
verifying tool and the value determined on the basis of the 
two variable regression function was determined. The e 
parameter has been selected once again as an error function.  

Figure 11 shows the level of conformity between the real 
and the predicted values. The fifth milling tool has been 
selected as a verifying tool.On the basis of the determined 
dependencies one can identify the model which has the 
highest accuracy of the tool wear prediction. The smallest 
error was obtained for the one variable regression model 
developed for the Ap_fr and Ap_peak measures. This model can 
be stated as the most efficient to tool wear prognosis. 

 
Tab. 5. Two variables regression functions 

Selected 
measures 

Function in a form of second order 
polynomial 

Ap_fr andAp_peak 

R2 = 0,82 

 

 

 

Ap_fr andAp_RMS 

R2 = 0,91 

 

 

 

Ap_RMSandAp_pea

k 

R2 = 0,94 

 

 

 

Ap_RMS andAf_2fr 

R2 = 0,91 

 

 

 

 
Fig. 10. Two variables regression model for Ap_RMS and Af_2fr 

 

 
Fig. 11. Relation between the real and predicted tool wear 

values (Ap_fr, Ap_peak) 
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3.6. Diagnostic inference based on artificial neural 
networks  

 
One of the most frequently applied inference models are 

pattern recognition methods. Neural networks are 
recognized as one of the most efficient tool wear prognosis 
methods. During this work the MLP (MultiLayer Perceptron) 
was applied. Moreover for the comparison, the RBF (Radial 
Basis Function) was also employed.  

The simplest approach to statistical inference is 
association of input variables x with continuous output 
variable, which consequently enables the obtainment of 
information regarding the relations between the data. The 
various diagnostic measures were introduced as the output 
variables, whereas the tool wear VBB was the constant output 
value. 

The ANN diagnostic model was formulated in „Statistica” 
software and „Neural networks” module .In order to search 
the network with the best quality, the various configurations 
of diagnostic measures with the application of various 
number of hidden layers were introduced and checked.  

The one-directional network’s structure is being achieved 
based on signal’s flow from the input neurons, through the 
hidden ones, and finally to the output neurons. Applying the 
automatic network’s searching, the program itself suggests 
the best fitted function to the particular case.  

Table 6 shows the various configuration of diagnostic 
measures which were applied as an input data.  

 
Tab. 6. The overview of input data configurations  

No. 
Number of 
input data 

Input data 

1. 6 
Af_RMS, Af_peak, AfN_RMS, AfN_peak, 

Ap_RMS, Ap_peak 

2. 6 
Af_fr, Af_2fr, AfN_fr, AfN_2fr, Ap_fr, 

Ap_2fr 
3. 4 Ap_RMS, Ap_peak, Ap_fr, Af_2fr 
4. 3 Ap_RMS, Ap_peak, Ap_fr 
5. 3 Ap_peak, Ap_fr, Af_2fr 
6. 2 Ap_RMS, Ap_peak 

 
After the entering of various input data to the program 

and the selection of hidden layers’ size, the learning process 
has been conducted. During this process, the best weights’ 
values, which connect the inputs with the hidden neurons, 
were searched with the application of the iterative approach. 
According to this algorithm, the weights are being fitted to 
the neurons in a way enabling the minimization of 
differences between the network’s output and the real value. 
After the learning process, the comparison of outputs with 
the learned data is being carried out. 

As an objective, the reduction of differences between the 
network’s outputs and entered outputs is being conducted. 

Table 7 depicts the examples of applied neural networks. 
After the network’s learning process, the prediction 

accuracy for the completely new data was checked. Similarly 
to one and two variables regression models, the validation 
data have stated the values of specified diagnostic measures 
obtained during the milling tests with the fifth end mill. 

Based on the validation data, the predicted value of the 
tool wear was determined. Figure 12 shows the exemplary 
chart, describing the dependencies between the real value of 

the tool wear VBB_rz and theoretical value VBB_te for the 
applied model, together with the determined validation error. 

On the basis of the validation error, the evaluation of 
neural network’s activity correctness was conducted. It was 
stated that the validation error is decreasing together with 
the elimination of particular measures on the network’s 
input. In this case, the application of higher amount of input 
data is not improving the quality of network’s activity. The 
lowest error was reached when the three following 
diagnostic measures: Ap_RMS, Ap_peak, Ap_fr were introduced. The 
selection of these three measures was not coincidental, 
because they were identified on the basis of information 
obtained from the previous analyses. These diagnostic 
measures reached the highest correlation coefficient R2. 

 
Tab. 7. Results from the various types of ANNs 

Type of network 
MLP 
6-8-1 

RBF 
4-7-1 

MLP 
3-4-1 

Number of inputs 6 4 3 

Number of hidden 
layer’s neurons 

8 7 4 

Learning quality 0,9817 0,9591 0,9506 
Testing quality 0,9692 0,9857 0,9974 
Learning error 0,0003 0,0007 0,0008 
Testing error 0,0012 0,0005 0,0001 

Activation function 
Expone

ntial 
Linear Linear 

 

 
Fig. 12. Validation of MLP 3-4-1 (Ap_RMS, Ap_peak, Ap_fr) 

The comparison of MLP with RBF have revealed that 
there are no significant differences in relation to their quality. 
The validation errors were similar, however the learning and 
testing quality was lower in case of RBF network.  

 
3.7. Comparison of inference methods 

 
The comparative analysis of the results aimed at 

identification of the most accurate diagnostic model to tool 
wear prognosis. The evaluation considers three inference 
methods, namely: the one variable regression model, the two 
variables regression model and artificial neural network. 

In order to compare the efficiency of the applied models, 
the error e values were summarized.  

Table 8 depicts the applied models together with the 
collection of obtained errors. It should be emphasized that 
ideal case can be met when the error e = 0, then all points will 
be located on the straight line. Practically, all models are 
characterized by the occurrence of errors, however the 
higher discrepancies form the line indicates the worse fitting 
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of the diagnostic model. Therefore, the searching was focused 
on the model with the lowest mean square error. 

Evaluating the obtained results, one can note that the 
best results were reached for the single variable regression 
model. Nevertheless, when the repeatability of the results 
was taken into account, this model was characterized by the 
highest discrepancies. 

 
Tab. 8. Overview of errors e for the compared models 

One 

variable 

regression 

Two variables 

regression 

Pattern recognition 

model 

0,0823 0,0433 0,0591 0,0418 

0,1533 0,0480 0,0630 0,0507 

0,0385 0,0730 0,0530 0,0535 

0,0824 0,0478 0,0670  

 
On the basis of the presented results, one can observe 

that one variable regression model has the highest tool wear 
value prediction accuracy. Comparing two remaining models, 
one can observe that error values are comparable, especially 
in case of ANNs. Despite the fact that these models did not 
reach the lowest error value, they allow the obtainment of 
better repeatability and thus they can be also considered in 
the prediction applications.  

Because of computational possibilities of neural networks 
and capability of learning, these approaches are being 
frequently applied to tool wear prognosis. The optimization 
possibilities of entered parameters allows the improvement 
in network’s quality and prediction ability. Considering that 
tool life is a random variable, even during the application of 
constant cutting conditions, the ideal fitting of the model is 
impossible. The application of ANNs is in many cases the best 
and recommended solution, however in case of MMC milling, 
the selection of this approach is not optimal.  

 
4. CONCLUSIONS 

 
On the basis of the conducted research the following 

conclusions were formulated. 
 The acceleration of vibration signal can be 

successfully applied for the prediction of tool wear 
during milling of MMC. However the efficient 
application of this symptom requires the appropriate 
processing of signal (i.e. distinguishing the 
constituents correlated directly with cutting 
kinematics) and selection of the appropriate 
vibrations measure.  

 The tool wear condition can be described with the 
highest accuracy when the Ap_peak and Ap_RMS measures 
are being applied. This was confirmed by the highest 
value of correlation coefficient. Therefore the 
vibrations in the thrust direction (along the Z axis) 
can have the influential effect on the tool wear during 
milling of MMC. 

 The spectral analysis of vibrations reveals also that 
the correlation coefficient reaches the highest value 
for the measure regarding the thrust direction: Ap_fr. 
However the conformity is in this case lower for the 
approx.20% in comparison to that reached for the 
corresponding measure determined in time domain. 

 The application of the two most popular ANNs: MLP 
and RBF allowed the identification of the better 
network. Despite the obtainment of the best learning 
quality for the network with six input data, the lowest 
validation error was reached for network with the 
three inputs. It indicates that for the lower amount of 
data, the network is able to better fit and evaluate the 
predicted value.  

 Evaluating the results’ repeatability, the neural 
networks and two variables regression model reach 
better results than the simplest one variable 
regression model. 

 Evaluating the neural networks based on the 
research, it can be observed that their application is 
not improving the tool wear prediction accuracy, 
comparing to other methods. Nevertheless, it is 
possible that the application of different network 
types with various number of neurons in a hidden 
layer could result in a prediction improvement.  
 

REFERENCES 
 
[1] Bhattacharya D., Lane C., Lin J.T., Machninability of silicon 

carbide reinforced aluminium metal matrix composite, Wear 
181-183 (1995) 883-888 

[2] Davim J., Diamond tool performance in machining metal–
matrix composites, Journal of Materials Processing 
Technology 128 (2002) 100-105 

[3] El-Gallab M., Sklad M., Machning of Al./SiC particulate metal 
matrix composites Part I: Tool performance, Journal of 
Materials Processing Technology 83 (1998) 151-158 

[4] El-Gallab M., Sklad M., Machning of Al./SiC particulate metal 
matrix composites Part II: Workpiece surface integrity, 
Journal of Materials Processing Technology 83 (1998) 277-
285 

[5] Elomari S., Lemieux S., Thermal expansion of isotropic 
Duralcan metal-matrix composites, Journal of materials 
science 33 (1998) 4381-4387 

[6] Frań E., Janas A., A. Kolbus., Porównanie niektórych 
właściwości mechanicznych kompozytów ex situ typu 
Duralcan z kompozytami in situ typu Al-TiC, KOMPOZYTY 
(COMPOSITES)2(2002)4 

[7] Jemielniak K., Automatyczna diagnostyka ostrzy narzędzi 
skrawających, Inżynieria Maszyn, R. 17, z.1, 2012 r. 

[8] Kosmol J., Automatyzacja wytwarzania. Monitorowanie 
ostrza skrawającego, Metody konwencjonalne i sieci 
neuronowe, WNT, Warszawa 1996 

[9] Korbowicz J., Obuchowicz A., Uciński D., Sztuczne sieci 
neuronowe. Podstawy i zastosowania, Akademicka Oficyna 
Wydawnicza PLJ, Warszawa 1994 

[10] Twardowski P., Diagnozowanie i nadzorowanie stanu ostrza 
i powierzchni obrobionej podczas dokładnego toczenia 
zahartowanej stali, praca doktorska, Politechnika Poznańska 
1998 

[11] www.rtapublicsales.riotinto.com/En/ OurProducts/Docum
ents/FicheDuralcan_Eng-rev%202016-04-19%20CROP.PDF 

[12] www.precorp.net/materials/mmc/ (The Duralcan 
composites machining guidelines) 

 

Brought to you by | Politechnika Poznanska - Poznan University of Technology
Authenticated

Download Date | 11/26/18 11:59 AM

https://www.rtapublicsales.riotinto.com/En/OurProducts/Documents/FicheDuralcan_Eng-rev%202016-04-19%20CROP.PDF
https://www.rtapublicsales.riotinto.com/En/OurProducts/Documents/FicheDuralcan_Eng-rev%202016-04-19%20CROP.PDF

