PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Microstructural and mechanical properties of CFC composite/Ti6Al4V joints brazed with Ag–Cu–Ti and refractory metal foils

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon fiber-reinforced carbon composite (CFC)/Ti6Al4V alloy brazing has been performed with Ag–Cu–Ti braze and Nb (or W) foil. Satisfactory bonding is achieved at the interfaces among substrates, refractory metal layer and fillers. The joining region consists of filler I, refractory metal layer and filler II. The fillers I and II are composed of Ag-based solid solution, TiCu and Cu-based solid solution. A diffusion layer (comprising Ti-based solid solution and Ti2Cu) and a thin TiC reaction layer develop adjacent to Ti6Al4V and CFC substrates, respectively. Regarding the joining with Nb foil, slight dissolution and diffusion occur between Nb and Ti in the fillers upon brazing. However, neither inter-diffusions nor reactions between W and fillers are involved in CFC/Ti6Al4V joining with W foil. The average shear strengths of joints with Nb and W foils are about 200% higher than those without refractory metal foil, indicating that the thermal mismatch in the joint can be relieved by the introduced refractory metal foils with appropriate coefficients of thermal expansion. Moreover, Nb foil with high ductility is beneficial for the inhibition of both the micro-crack propagation and the brittle-phase formation in the joint. W foil can act as a hard barrier to adjust the joint stress distribution and to decrease the joint stress concentration.
Rocznik
Strony
487--496
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
autor
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China
autor
  • Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China
Bibliografia
  • [1] Djugum R, Sharp K. The fabrication and performance of C/C composites impregnated with TaC filler. Carbon. 2017;115:105–15. https://doi.org/10.1016/j.carbon.2016.12.019.
  • [2] Xiong JT, Li JL, Zhang FS, Lin X, Huang WD. Direct joining of 2D carbon/carbon composites to Ti-6Al-4V alloy with a rectangular wave interface. Mater Sci Eng A. 2008;448(1–2):205–13. https://doi.org/10.1016/j.msea.2007.11.013.
  • [3] Guo W, Wang L, Zhu Y, Chu PK. Microstructure and mechanical properties of C/C composite/TC4 joint with inactive AgCu filler metal. Ceram Int. 2015;41(5):7021–7. https://doi.org/10.1016/j.ceramint.2015.02.006.
  • [4] Singh M, Shpargel TP, Morscher GN, Asthana R. Active metalbrazing and characterization of brazed joints in titanium to carbon-carbon composites. Mater Sci Eng A. 2005;412(1–2):123–8.https://doi.org/10.1016/j.msea.2005.08.179.
  • [5] Mao Y, Wang S, Peng L, Deng Q, Zhao P, Guo B, et al. Brazing of graphite to Cu with Cu50TiH2 + C composite filler. J Mater Sci.2016;51(4):1671–9. https://doi.org/10.1007/s10853-015-9415-0.
  • [6] Zhou YH, Liu D, Niu HW, Song XG, Yang XD, Feng JC. Vacuum brazing of C/C composite to TC4 alloy using nano-Al2O3 strengthened AgCuTi composite filler. Mater Des. 2016;93:347–56. https://doi.org/10.1016/j.matdes.2015.12.143.
  • [7] Song XR, Li HJ, Zeng X. Brazing of C/C composites to Ti6Al4V using multiwall carbon nanotubes reinforced TiCuZrNi brazing alloy. J Alloys Compd. 2016;664:175–80. https://doi.org/10.1016/j.jallcom.2015.12.242.
  • [8] Ba J, Wang YH, Liu YL, Lin JH, Qi JL, Wang G, et al. In situ consume excessive Ti element and form fine Ti based compounds as reinforcements for strengthening C/C-TC4 joints. Vacuum. 2017;143:303–11. https://doi.org/10.1016/j.vacuum. 2017.06.035.
  • [9] Song XR, Li HJ, Casalegno V, Salvo M, Ferraris M, Zeng XR. In situ TiC particle reinforced TiCuZrNi brazing alloy for joining C/C composites to Ti6Al4V. Int J Appl Ceram Technol. 2018;15(3):611–8. https://doi.org/10.1111/ijac.12863.
  • [10] Peng S, Mao Y, Min M, Xi L, Deng Q, Wang G, et al. Joining of tungsten to CuCrZr alloy with Cu–TiH 2–Ni filler and Cu interlayer. Int J Refract Met Hard Mater. 2019;79:31–6. https://doi.org/10.1016/j.ijrmhm.2018.11.005.
  • [11] Hao ZT, Wang DP, Yang ZW, Wang Y. Microstructure and mechanical properties of Ti2AlNb alloy and C/C composite joints brazed with Ag–Cu–Zn and Ag–Cu–Zn/Cu/Ag–Cu–Ti filler metals. Arch Civ Mech Eng. 2019;19(4):1083–94. https://doi.org/10.1016/j.acme.2019.04.008.
  • [12] Li C, Si XQ, Cao J, Qi JL, Dong ZB, Feng JC. Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction. J Mater Sci Technol. 2019;35(11):2470–6. https://doi.org/10.1016/j.jmst.2019.07.023.
  • [13] Liu WS, Wang ZX, Ma YZ, Cai QS. Investigation of tungsten/steel brazing using Ta and Cu interlayer. Fusion Eng Des. 2016;113:102–8. https://doi.org/10.1016/j.fusengdes.2016.11. 004.
  • [14] Gao Y, Huang L, Bao Y, An Q, Sun Y, Zhang R, et al. Joints of TiBw/Ti6Al4V composites—inconel 718 alloys dissimilar joining using Nb and Cu interlayers. J Alloys Compd. 2020;822: 153559. https://doi.org/10.1016/j.jallcom.2019.153559.
  • [15] Pan R, Kovacevic S, Lin T, He P, Sekulic DP, Mesarovic SD, et al. Control of residual stresses in 2Si-B-3C-N and Nb joints by the Ag–Cu–Ti + Mo composite interlayer. Mater Des. 2016;99:193–200. https://doi.org/10.1016/j.matdes.2016.03.072.
  • [16] Qin YQ, Feng JC. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers. Mater Sci Eng A.2009;525(1–2):181–5. https://doi.org/10.1016/j.msea.2009.06.049.
  • [17] Zhang LX, Zhang B, Sun Z, Pan XY, Shi JM, Feng JC. Preparation of graded double-layer materials for brazing C/C composite and TC4. J Alloys Compd. 2020;825: 153639. https://doi.org/10.1016/j.jallcom.2020.153639.
  • [18] Warlimont H, Martienssen W, editors. Springer handbook of materials data. 2nd ed. Berlin: Springer; 2018.
  • [19] Min M, Mao Y, Deng Q, Wang G, Wang S. Vacuum brazing of Mo to 316L stainless steel using BNi-2 paste and Cu interlayer. Vacuum. 2020;175: 109282. https://doi.org/10.1016/j.vacuum. 2020.109282.
  • [20] Mao Y, Yu S, Zhang Y, Guo B, Ma Z, Deng Q. Microstructure analysis of graphite/Cu joints brazed with (Cu-50TiH2)+B composite filler. Fusion Eng Des. 2015;100:152–8. https://doi.org/10. 1016/j.fusengdes.2015.05.011.
  • [21] Guo W, Zhu Y, Wang L, Qu P, Kang H, Chu PK. Microstructure evolution and mechanical properties of vacuum-brazed C/C composite with AgCuTi foil. Mater Sci Eng A. 2013;564:192–8. https://doi.org/10.1016/j.msea.2012.11.057.
  • [22] Liu D, Niu HW, Zhou YH, Song XG, Tang DY, Feng JC. Brazing continuous carbon fiber reinforced Li2O–Al2O3–SiO2 ceramic matrix composites to Ti–6Al–4V alloy using Ag–Cu–Ti active filler metal. Mater Des. 2015;87:42–8. https://doi.org/10.1016/j.matdes.2015.08.005.
  • [23] Duan Y, Mao Y, Xu Z, Deng Q, Wang G, Wang S. Joining of graphite to Ti6Al4V alloy using Cu-based fillers. Adv Eng Mater. 2019;21(11):1900719. https://doi.org/10.1002/adem.201900719.
  • [24] Singh M, Smith CE, Asthana R, Gyekenyesi AL. Active metal brazing of graphite foam-to-titanium joints made with SiC-Coatedfoam. J Eur Ceram Soc. 2020;40(7):2533–41. https://doi.org/10.1016/j.jeurceramsoc.2019.12.048.
  • [25] Yi ZH, Ran LP, Yi MZ. Differences in microstructure and properties of C/C composites brazed with Ag–Cu–Ti and Ni–Cr–P–Ti pasty brazing filler. Vacuum. 2019;168: 108804. https://doi.org/10.1016/j.vacuum.2019.108804.
  • [26] Wang YL, Wang WL, Huang JH, Yu RH, Yang J, Chen SH. Reactive composite brazing of C/C composite and GH3044 with Ag–Ti mixed powder filler material. Mater Sci Eng A. 2019;759:303–12.https://doi.org/10.1016/j.msea.2019.05.065.
  • [27] Shiue RK, Wu SK, Chan CH. The interfacial reactions of infrared brazing Cu and Ti with two silver-based braze alloys. J Alloy Compd. 2004;372(1–2):148–57. https://doi.org/10.1016/j.jallcom.2003.09.155.
  • [28] Ali M, Knowles KM, Mallinson PM, Fernie JA. Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys. Acta Mater. 2016;103:859–69. https://doi.org/10.1016/j.actamat. 2015.11.019.
  • [29] Cao XJ, Zhu Y, Guo W, Peng P, Ma K. Microstructure and mechanical properties of C/C composite/TC17 joints with Ag–Cu–Ti brazing alloy. IOP Conf Ser Mater Sci Eng. 2017;275(1):012040. https://doi.org/10.1088/1757-899X/275/1/012040.
  • [30] Baren MR. The Ag–Nb (Silver–Niobium) system. Bull Alloy Phase Diagrams. 1989;10:640. https://doi.org/10.1007/BF02877632.
  • [31] Okamoto H, Schlesinger ME, Mueller EM, (eds). ASM Hand-book, Vol 3. In: Alloy Phase Diagrams. 2nd edn. Materials Park, OH. 2016.
  • [32] Wang ZY, Li MN, Ba J, Ma Q, Fan ZQ, Lin JH, et al. In-Situ synthesized TiC nano-flakes reinforced C/C composite-Nb brazed joint. J Eur Ceram Soc. 2018;38(4):1059–68. https://doi.org/10.1016/j.jeurceramsoc.2017.11.059.
  • [33] Qin YQ, Yu ZS. Joining of C/C composite to TC4 using SiC particle-reinforced brazing alloy. Mater Charact. 2010;61(6):635–9.https://doi.org/10.1016/j.matchar.2010.03.008.
  • [34] Shang JL, Yan JZ, Li N. Brazing W and Fe–Ni–Co alloy using Ag-28Cu and Ag-27Cu-3.5Ti fillers. J Alloys Compd. 2014;611:91–5.https://doi.org/10.1016/j.jallcom.2014.05.106.
  • [35] de Prado J, Sánchez M, Ureña A. Evaluation of mechanically alloyed Cu-based powders as filler alloy for brazing tungsten to a reduced activation ferritic-martensitic steel. J Nucl Mater. 2017;490:188–96. https://doi.org/10.1016/j.jnucmat.2017.04.033.
  • [36] Sharma A, Ahn B. Brazeability, microstructure, and joint characteristics of ZrO2/Ti–6Al–4V brazed by Ag–Cu–Ti filler reinforced with cerium oxide nanoparticles. Adv Mater Sci Eng. 2019;2019:8602632. https://doi.org/10.1155/2019/8602632.
  • [37] Li J, Vivek A, Daehn G. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer. J Mater Sci Technol. 2021;79:191–204. https://doi.org/10.1016/j.jmst.2020.11.050.
  • [38] Peng L, Mao Y, Zhang Y, Xi L, Deng Q, Wang G. Microstructural and mechanical characterizations of W/CuCrZr and W/steel joints brazed with Cu-22TiH 2 filler. J Mater Process Technol. 2018;254:346–52. https://doi.org/10.1016/j.jmatprotec.2017.11. 056.
  • [39] Hao XH, Dong HG, Li S, Xu XX, Li P. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by gtaw using copper-based filler wire. J Mater Process Technol. 2018;257:88–100. https://doi.org/10.1016/j.jmatprotec.2018.02.020.
  • [40] Zhu DY, Ma ML, Jin ZH, Wang YL. The effect of molybdenum net interlayer on thermal shock resistance of Al2O3/Nb brazed joint. J Mater Process Technol. 1999;96(1–3):19–21. https://doi.org/10.1016/S0924-0136(99)00078-3.
  • [41] Xing LL, Lin JC, Huang M, Yang WQ. Joining of graphite to copper with Nb interlayer: microstructure and mechanical properties. Adv Eng Mater. 2019;21(2):1800810. https://doi.org/10.1002/adem.201800810.
  • [42] Ma X, Mao Y, Duan Y, Deng Q, Wang G, Wang S. Effect of Nb or Ta interlayer on microstructure and mechanical properties of graphite/Ti6Al4V alloy joints. Adv Eng Mater. 2021;23(4):2001237. https://doi.org/10.1002/adem.202001237.
  • [43] Ong FS, Tobe H, Sato E. Intermetallics evolution and fracture behavior of Nb interlayer inserted Si3N4/Ti joints brazed with AgCuTi filler. Mater Sci Eng A. 2019;762: 138096. https://doi.org/10.1016/j.msea.2019.138096.
  • [44] Oliveira JP, Panton B, Zeng Z, Andrei CM, Zhou Y, Miranda RM, et al. Laser joining of NiTi to Ti6Al4V using a Niobium interlayer. Acta Mater. 2016;105:9–15. https://doi.org/10.1016/j.actamat.2015.12.021.
  • [45] Li WW, Chen B, Xiong HP, Zou WJ, Ren HS. Joining of Cf/Sic composite to GH783 superalloy with NiPdPtAu–Cr filler alloy and a Mo interlayer. J Mater Sci Technol. 2019;35(9):2099–106.https://doi.org/10.1016/j.jmst.2019.04.011.
  • [46] Zhong ZH, Zhou ZJ, Ge CC. Brazing of doped graphite to Cu using stress relief interlayers. J Mater Process Technol.2009;209(5):2662–70. https://doi.org/10.1016/j.jmatprotec.2008.06.021.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-832e4109-1b88-4bf1-a0fa-1b07a714ca1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.