Wykorzystanie symulacji do modelowania łańcucha dostaw

The use of simulation to model the supply chain

Abstract

W artykule omówiono problemy związane z funkcjonowaniem łańcucha dostaw branży nawozowej w warunkach niepewności spowodowanej zmiennym popytem oraz zastosowaniem symulacji komputerowej jako sposobu na optymalizację i wariantowość omawianego lańcucha dostaw. Na wstępie przedstawiono teoretyczne aspekty symulacji komputerowych, funkcjonowania łańcuchów dostaw oraz dokonano doglębnego przeglądu literatury. Następnie zaprezentowano model badanego łańcucha dostaw oraz dokonano jego szczegółowej analizy i wariantowości. Celem podjętych rozważań jest zaprezentowanie skuteczności modelu symulacyjnego łańcucha dostaw w branży nawozowej, umożliwiającego zbadanie działania układu na drodze doświadczalnej bez konieczności budowy modelu fizycznego oraz wydatkowania dodatkowych nakładów finansowych, a umożliwiającego optymalizację łańcucha dostaw i zniwelowanie ryzyka, zwłaszcza w warunkach wzmożonego popytu.

Słowa kluczowe:
łańcuch dostaw, symulacja komputerowa, branża nawozowa.

The article presents problems in the functioning of the supply chain of the fertilizer industry in conditions of uncertainty caused by the variability demand and the use of computer simulation as a way of optimization of the supply chain. At the beginning presented the theoretical aspects of computer simulations, the functioning of supply chains and in-depth review of the literature. Then presented the model analyzed supply chain and made its detailed analysis. The aim of the considerations is to demonstrate the effectiveness of the simulation model of the supply chain in the fertilizer industry, enabling investigate the operation of the system by experiment without having to build a physical model and disbursement of additional funding, and allow for optimization of the supply chain and overcoming the risks, especially in terms of increased demand.

Key words:
supply chain, computer simulation, fertilizer industry.

Wstęp

Efektywne zarządzanie łańcuchem dostaw w różnych warunkach rynkowych, podczas logistycznych i produkcyjnych niepewności, jest kluczowym problemem dla firm przemysłu chemicznego. Jak każde środowisko rzeczywiste, łańcuch dostaw podlega niepewności. Jednak niepewność jest szczególnie krytycznym problemem w środowisku łańcucha dostaw ze względu na zintegrowany charakter łańcuchów dostaw. Elementy lańcucha, czyli klienci, dostawcy, producenci są ściśle zintegrowani i wzajemnie powiązani. Losowość występująca na danym etapie łańcucha wpływa na wszystkie inne jego etapy. Przykładem tego zjawiska jest efekt byczego bicza (ang. bullwhip), który polega na przekazywaniu losowości wahań popytu w głąb łańcucha dostaw. Efekt ten rozprzestrze-
nia siẹ na całym obszarze łańcucha dostaw powodując niepewność w planach produkcyjnych, ułomność prognozowania oraz wysokie koszty tworzenia zapasów magazynowych (Chang, Makatsoris, 2000, s. 24-30). Występująca niepewność w lańcuchu dostaw zwykle zwiększa zmienność przychodów firmy, co powoduje prawdopodobieństwo zmniejszenia jej zysków. W szczególności wahania popytu są ważnym czynnikiem branym pod uwage podczas projektowania łańcucha dostaw (Jung, Blau, Pekny, Gintaras, Reklaitis, Eversdyk, 2004, s. 2087-2106). Aby zabezpieczyć się przed niepewnością popytu, powszechnie tworzy się zapasy bezpieczeństwa na różnych etapach w łańcuchu dostaw.

Celem podjętych rozważań jest zaprezentowanie skuteczności modelu symulacyjnego łańcucha dostaw w branży nawozowej, umożliwiającego zbadanie działania układu na drodze doświadczalnej bez koniecz-
ności budowy modelu fizycznego oraz dodatkowych nakładów finansowych, a umożliwiającego optymalizację łańcucha dostaw i zniwelowanie ryzyka, zwłaszcza w warunkach wzmożonego popytu.

Zastosowanie
 symulacji komputerowej

Pojęcie modelowania symulacyjnego pojawia się podczas tworzenia za pomoca komputera modeli rzeczywistych procesów. Zatem symulacja komputerowa to odtworzenie działania badanego procesu rzeczywistego na podstawie jego modelu matematycznego oraz zbadanie zmiennych wpływów otoczenia (zmienne wejściowe) i wewnętrznych właściwości systemu (parametry modelu) na charakterystyki systemu (Klempka, Stankiewicz, 2004).

Analiza zlożonych łańcuchów logistycznych jest trudnym zadaniem ze względu na problemy, które pojawiają się, gdy losowość jest osadzona w procesie. Niestety losowość jest powszechną i nieuniknioną cechą wśród procesów rzeczywistych. Komputerowe modelowanie i symulacja pozwalają odzwierciedlić złożoną strukturę procesu oraz jego dynamiczne zachowywanie się uwzględniając jednocześnie w pełni jego stochastyczność (Wang, Chatwin, 2005, s. 1254-1265).

Przeglad literatury

Symulacja jest bardzo pomocna i szeroko wykorzystywana do analizowania procesów stochastycznych, takich jak zlożony łańcuch logistyczny (Terzi, Cavalieri, 2004, s. 3-16; Min, Zhou, 2002, s. 231-249). Jest ona wykorzystywana wszędzie tam, gdzie skonstruowanie modeli matematycznych lub fizycznych jest bardzo trudne albo wręcz niemożliwe w dokładnej analizie procesów złȯonych (O'Kane, Spenceley, Taylor, 2000, s. 412-424). Natomiast obserwacje rzeczywistych obiektów zaliczanych do procesów zlożonych dowodzą, że funkcjonują one w warunkach działania dużej liczby czynników przypadkowych. Klasyczne modele analityczne, wciąż wykorzystywane we wspomaganiu planowania przepływu dóbr, nie są już wystarczająco szczególowe dla potrzeb koordynacji przeplywu produktów pomiędzy ogniwami lańcucha dostaw. Coraz częściej do analizy procesów zachodzących w łańcuchach dostaw jest wykorzystywana symulacja (Biswas, Narahari, 2004, s. 704-726).

Część autorów wykorzystuje komercyjne oprogramowanie do symulacji różnych procesów, a część korzysta z popularnych jezzyów programowania do tworzenia własnych programów symulacyjnych. S. Biswas, Y. Narahari oraz S. Ganapathy, S. Narayanan i K. Srinivasan opracowali zorientowaną obiektowo metodologię modelowania symulacyjnego łańcucha
dostaw (Biswas, Narahari, 2004, s. 704-726; Ganapathy, Narayanan, Srinivasan, 2003). H. Ding, L. Benyoucef, X. Xie, C. Hans i J. Schumacher stworzyli natomiast narzędzie oparte na symulacji i optymalizacji w celu projektowania, poprawy oraz wspierania decyzji w łańcuchach dostaw (Ding, Benyoucef, Xie, Hans, Schumacher, 2004).

W artykule S.G. Hendersona (Henderson, Biller, Hsieh, Shortle, Tew, Barton, 2007) pokazano wykorzystanie symulacji jako narzędzia do automatycznej budowy łańcucha dostaw poprzez modele wykorzystujące ontologie. Taki model pozwala decydentom na łatwą ocenę efektywności zbudowanego systemu. Autorzy w pracy A. Cimino (Cimino, Longo, Mirabelli, 2010, s. 1-9) pokazali szeroki zakres zastosowania dyskretnej symulacji komputerowej poprzez przemyst, łańcuchy dostaw, opiekę zdrowotną aż po procesy biznesowe. W swojej pracy zaprezentowali symulator łańcucha dostaw (napisany w języku $\mathrm{C}++$) dla problemu zarządzania zapasami wzdłuż łańcuch dostaw.

W pracy J.Y. Junga (Jung, Blau, Pekny, Gintaras, Reklaitis, Eversdyk, 2004, s. 2087-2106) zaproponowano optymalizacyjny model oparty na symulacji komputerowej do zarządzania łańcuchem dostaw przy wahaniach popytu. Zasugerowano korzystanie z deterministycznych modeli planowania i harmonogramowania, które uwzględniają poziom zapasów bezpieczeństwa jako sposób na problem wahań popytu. Dodatkowo przeanalizowano tam problem przypadku przemysłowego w celu wykazania przydatności proponowanego podejścia.

W artykułach D. Petrovica, J. Wanga i Y.F. Shub'a oraz D. Peidro (Petrovic, Roy, Petrovic, 1998, s. 299-309; Wanga, Shub, 2005, s. 107-127; Peidroa, Mulaa, Polera, Verdegayb, 2009, s. 2640-2657) przedstawiono wykorzystanie teorii zbiorów rozmytych do zamodelowania niepewności w łańcuchu logistycznym. Wykorzystano zarówno komputerowe modelowanie symulacyjne, jak i programowanie liniowe do rozwiązania problemu zarządzania zapasami w warunkach niepewności. Praca J. Li (Li, Sheng, Liu 2010, s. 850-859) przedstawia natomiast wieloagentowy model symulacyjny służący do analizy zachowania dominującego gracza w łańcuchu dostaw. Badany łańcuch dostaw składa się z dostawców surowca, dostawców komponentów, producentów i detalistów. Główne źródła niepewności dla zachowań dominujących graczy są identyfikowane, w tym informacja rynkowa, ceny sprzedaży, ceny zakupu.

Teoretyczne aspekty funkcjonowania łańcuchów dostaw

Wspótczesny rozwój rynku, poprzez globalną konkurencję, deregulację transportu czy możliwości uzyskania źródeł zaopatrzenia za granicą, daje przedsię-

Tabela 1
Przeglad wybranych definicji łańcucha dostaw

Autor	Definicja
M. Christopher, 1998 M. Ferstch 1998	sieć organizacji zaangażowanych, poprzez powiązania z dostawcami i odbiorcami, w różne procesy i działania, które tworzą wartość w postaci produktów i usług dostarczanych ostatecznym konsumentom grupa przedsiębiorstw realizująca wspólne dzialania, niezbędne do zaspokojenia zapotrzebowania na określone produkty w całym łańcuchu (sieci) przeplywu dóbr — od momentu pozyskania surowców do ich dostarczenia ostatecznemu odbiorcy
M. Ciesielski, 1998	określona sekwencja działań, a więc proces, procesy skupiające się na finalnym odbiorcy, prowadzone zgodnie ze strategią konkurencji na rynku, a związane z efektywnością i dynamiką zarządzania przepływami fizycznymi, finansowymi, informacyjnymi oraz wiedzą, które towarzyszạ ruchowi produktów i realizacji uslug w różnych fazach cyklu ich życia
P. K. Bagchi, 2000	składa się z sieci zakladów i wykonawców, którzy dostarczają surowce i komponenty, następnie przerabiają je w pólprodukty i podzespoły, potem produkują z nich wyrób finalny, a następnie umożliwiają ich konsumpcję przez konsumenta finalnego
P. Blaik, 1997	zintegrowane zarządzanie sekwencjami przeplywu logistycznego, przetwarzaniem i czynnościami związanymi z obsługą - od dostawców do ostatecznych klientów, niezbędnymi do wytworzenia produktu/usługi w sposób sprawny i efektywny
P. Blaik, 2001	maksymalna integracja poszczególnych ogniw — dostawców i odbiorców w celu efektywnej i zyskownej wspólpracy
J.J. Coyle, E.J. Bardi, C.J. Langley Jr, 2002	obejmuje wszystkie fazy tworzenia i dostarczania wartości logistycznej, od miejsca pozyskania surowców poprzez produkcję do ostatecznego nabywcy, w celu zaoferowania odpowiednich towarów we właściwym miejscu i czasie, we właściwej ilości i jakości, przy uzasadnionych kosztach, z wykorzystaniem nowoczesnych technologii informatycznych

[^0]biorstwom wiele możliwości, zachęcając ich do twórczego i innowacyjnego działania, co skutkuje dynamicznym rozwojem i integracją wspólpracujących ze sobą przedsiębiorstw (łańcuchów dostaw) oraz ich dopasowaniem do potrzeb klientów wewnętrznych i zewnętrznych. Wykreowanie pojęcia łańcucha dostaw jest efektem wieloletnich doświadczeń przedsiębiorstw przodujaçych w dziedzinie logistyki oraz naukowców. Przegląd wybranych definicji łańcucha dostaw ukazuje tabela 1.

Lańcuch dostaw, w najprostszej postaci, składa się z firmy, dostawców oraz klientów firmy. Rozbudowane łańcuchy dostaw zawierają trzy dodatkowe typy uczestników. Pierwszy z nich to „dostawcy dostawców" lub dostawcy znajdujący się na samym początku łańcucha dostaw. Następnym typem są „klienci klientów" lub klienci znajdujący się na samym końcu łańcucha dostaw. Ostatnia kategoria to grupa firm świadczących usługi dla innych firm objętych łańcuchem dostaw. Są to firmy, które zapewniają obslugę

R
Rysunek 1
Logistyczny tańcuch dostaw

Źródło: Coyle, Bardi, Langley, 2002.
logistyczną, finansową, marketingową czy informatyczną. Schemat przykładowego łańcucha dostaw ukazuje rysunek 1.

Efektywne zarządzanie łańcuchem dostaw opiera się więc na ścisłej integracji poszczególnych ogniw oraz ograniczaniu niepewności w ich funkcjonowaniu poprzez ścislą wspólpracę i ciagłly przeplyw informacji.

Model łańcucha dostaw

Stale rosnąca konkurencja na rynku sprawia, że przedsiębiorstwa wciąż poszukują możliwości redukcji kosztów produkcji i zaopatrzenia, dlatego też coraz częściej nabywaja potrzebne dobra na rynku globalnym oraz przenoszą umiejscowienia produkcyjne do krajów o niskich kosztach robocizny (ang. offshoring). W rezultacie lańcuchy dostaw przedsiębiorstw stają się coraz dłuższe i bardziej zlożone, a rynki zaopatrzenia coraz bardziej oddalone. Taka sytuacja umożliwia redukcję kosztów, ale jednocześnie zwiększa prawdopodobiénstwo nieuzyskania zalożonych celów, kształtując w ten sposób relację trade-off, czyli obniżenie kosztów działalności następuje przy jednoczesnym wzroście ryzyka różnego rodzaju zakłóceń.

Analogiczna sytuacja ma miejsce w analizowanym łańcuchu dostaw działającym w przemyśle chemicznym, w branży nawozowej. Poddostawcy i producenci zamawianych surowców zlokalizowa-
ni są w miejscach, gdzie dostẹp do surowców, a dzięki temu ich produkcja i transport są tańsze. Rynek nawozów mineralnych w Polsce ma okreŚloną specyfikę. Po stronie popytu znajduje się duża liczba podmiotów, natomiast podaż jest reprezentowana głównie przez jednostki o charakterze oligopolistycznym (Kapusta, 2003), a co za tym idzie, jest to rynek konsumenta regulującego przepływ produktów. Ponadto branża nawozowa charakteryzuje się sezonowością warunkowaną zmianami pogodowymi oraz warunkami finansowymi ostatecznych konsumentów, a także czynnikiem modyfikacyjnym, wpływającym na funkcjonowanie łańcucha, będzie miejsce zamawianego produktu, surowce - kraj importer z Europy czy Dalekiego Wschodu. Na podstawie przeprowadzonych obserwacji dla potrzeb niniejszego artykułu zajmiemy się analizą hipotetycznego łańcucha dostaw w przemyśle chemicznym, w branży nawozowej. Badaniu poddamy proces składający się z 4 ogniw. Rysunek 2 przedstawia schemat analizowanego łańcucha logistycznego.

W sezonie wartości zapasów surowców na każdym etapie lańcucha dostaw sạ wysokie, co wynika z zabezpieczenia produkcji przed postojem i zwiększa bezpieczeństwo. Przedsiębiorstwa mogą minimalizować koszty zapasów zarówno w przypadku surowców krajowych, jak i europejskich, poznając dzięki symulacji, różne warianty, czasy dostawy, produkcji czy obciążenia stanowisk, zwłaszcza w okresie największego popytu.

Rysunek 2
Schemat badanego tańcucha dostaw

[^1]Rysunek 3
Fragment modelu analizowanego łańcucha dostaw w środowisku Arena

Źródło: opracowanie wlasne.

Badania symulacyjne

Opisany łańcuch dostaw został zamodelowany w pakiecie symulacyjnym Arena firmy Rockwell Software (wersja 14). Fragment modelu badanego łańcucha dostaw w środowisku Arena został przedstawiony na rysunku 3. Arena jest środowiskiem umożliwiającym przeprowadzenie badań symulacyjnych praktycznie dowolnego systemu złożonego, w tym złożonych łańcuchów dostaw. Uniwersalność tego narzędzia pozwala odwzorować procesy zachodzące w każdego typu systemie.

Wykorzystanie modelu symulacyjnego do analizy wplywu wahań popytu jest niezmiernie ważne, gdyż pozwala na przeprowadzenie badań procesów logistycznych zachodzących w czasie dostaw bez ingerencji w rzeczywiste procesy. Oznacza to, że wszelkie analizy przeprowadza się tylko w komputerze, a wykorzystanie odpowiedniej metodyki przygotowania modelu symulacyjnego zapewnia ścisłą korelację pomiędzy wynikami uzyskanymi z wykorzystaniem modelu symulacyjnego a wynikami, jakie można byloby osiągnąć przeprowadzając analogiczne badania na rzeczywistym łańcuchu dostaw (Banks, Carson, Nelson, 2001). Raz przygotowany model symulacyjny pozwala na przeprowadzenie nawet bardzo dużej liczby analiz konfiguracji i wariantów łańcucha dostaw oraz zmian struktury popytu.

Czasy trwania transportu oraz obsługi magazynowej zostaly zamodelowane z uwzględnieniem ewentualnej losowości. Parametry modelu zostaly zebrane poniżej:

1. Przeanalizowano wahania popytu p_{i} na poszczególne produkty jako procent średniego czasu ocze-
kiwania s_{i} na zlecenie na dany produkt zgodnie z rozkładem normalnym $\mathrm{N}\left(s_{i}, p_{i}\right)$. Uwzględniono dziesięć poziomów p_{i} :
$p_{i}:\{10 \%, 15 \%, 20 \%, 25 \%, 30 \%, 35 \%, 40 \%, 45 \%, 50 \%, 55 \%\}$
2. Założono, że w lańcuchu występują cztery typy wyrobów:
a. Produkt A.
b. Produkt B.
c. Produkt C.
d. Produkt D.
3. Parametry wynikowe podlegające analizie:
a. Czas magazynowania.
b. Czas oczekiwania przed przyjęciem do danego ogniwa łańcucha dostaw.
c. Wykorzystanie zasobów w danym ogniwie łańcucha dostaw.
4. Parametry eksperymentów symulacyjnych:
a. Czas przedbiegu - 15 dni.
b. Czas pojedynczego badania - 2 lata.
c. Liczba identycznych i niezależnych losowo powtórzeń - 3 .

Wyniki symulacji komputerowej

W celu przeprowadzenia badań symulacyjnych zaplanowano zbiór eksperymentów, które zostały wykonane na przedstawionym wcześniej modelu łańcu-

Rysunek 4
Średni czas oczekiwania produktów w całym łańcuchu dostaw (w dniach)
względem wahań popytu p_{i}

Źródło: opracowanie własne.
cha dostaw. Eksperymentów było łącznie $30(10 \cdot 3=$ $=10$ poziomów wykorzystania, 3 powtórzenia każdego wariantu). Zagregowane wyniki wraz z komentarzami zostaly przedstawione poniżej.

Rysunki 4 i 5 przedstawiają odpowiednio zsumowany średni oraz maksymalny czas oczekiwania produktów w całym łańcuchu dostaw (w dniach) względem wahań popytu p_{i}. Można zauważyć, że dla poszczególnych produktów większe zróżnicowanie występuje dla średnich niż dla maksymalnych czasów
oczekiwania. Ponadto zwiększenie zmiany wahań popytu nie wplynęło aż tak znacząco dla średnich czasów oczekiwania, jak dla maksymalnych czasów, gdzie widać, iż maksymalne oczekiwanic produktów w danym ogniwie łańcucha dostaw zwiększa się z 10 dni do aż 25 dni w przypadku czynnika p_{i} na poziomie 55%. Na wykresie (rys. 5) widać także znaczący wzrost po wzroście czynnika p_{i} powyżej 35%.

Rysunki 6 i 7 przedstawiają odpowiednio średni oraz maksymalny czas oczekiwania przed wyróżnio-

Rysunek 5
Maksymalny czas oczekiwania produktów w całym łańcuchu dostaw (w dniach) względem wahań popytu p_{i}

[^2]Rysunek 6
Średni czas oczekiwania przed wyróżnionymi ogniwami łańcucha dostaw (w dniach)
względem wahań popytu p_{i}

Źródło: opracowanie wlasne.
nymi ogniwami łańcucha dostaw (w dniach) względem wahań popytu p_{i}. Pomimo izz wpływ zmian wahań popytu dla średnich czasów wydaje się niewielki (widoczne małe zmiany na wykresie na rysunku 6), to łatwo zauważyć, że w przypadku maksymalnego czasu oczekiwania (rys. 7) dla większych wartości czynnika p_{i}, czyli dla większej losowości zawartej już od początku łańcucha dostaw, wpływ ten jest większy. Można to zauważyć w szczególności dla kolejek tworzących się przed magazynem, który obsługuje naj-
większą liczbę zleceń. W skrajnych przypadkach produkty oczekiwały ponad 20 dni.

Kolejne zestawienie danych na wykresie (rys. 8) pokazuje procent wykorzystania wyróżnionych ogniw łańcucha dostaw względem wahań popytu p_{i}. Mȯ̇na zauważyć, że dla większości wielkości czynnika wahań popytu poziom wykorzystania zasobów praktycznie się nie zmienia. Co istotne, mimo długich maksymalnych czasów oczekiwania, które można było zobaczyć na wykresie na rysunku 7 , widać, ìz zasoby nie
Ry
Rysunek 7

Maksymalny czas oczekiwania przed wyróżnionymi ogniwami łańcucha dostaw (w dniach) względem wahań popyłu p_{i}

Źródlo: opracowanie wlasne.

Procent wykorzystania wyróżnionych ogniw łańcucha dostaw względem wahań popytu p_{i}

Źródło: opracowanie własne.
są wykorzystywane w 100%. Oznacza to, że elementy niepewności i losowości wahań popytu działają na tyle mocno, ïz czasami następuje kumulacja kolejek przed danym ogniwem, a czasami dane ogniwo nie obsługuje żadnego przepływu. Spadek procentu wykorzystania zasobów w centrum dystrybucji oraz w przedsiębiorstwie produkcyjnym dla poziomu czynnika p_{i} z 10 do 15% przy jednoczesnym wzroście procentu wykorzystania dla magazynu można tłumaczyć tym, iż przy malych wahaniach popytu proces przepływu w całym łańcuchu dostaw przebiega sprawniej, a magazyn jest tutaj zauważalnym wąskim gardłem, od którego zależy efektywne wykorzystanie innych ogniw łańcucha dostaw.

Podsumowanie

Zarządzanie łańcuchem dostaw w każdej branży zawsze obarczone jest pewnym ryzykiem i niepewnością, gdyż w tak złożonym systemie często można natknąć się na zdarzenia i zjawiska noszące znamiona losowości, których do końca nie da się przewidzieć ze wzglẹdu na nieznane przyczyny ich powstawania. In-
tegracja działań, wspólpraca, a także znajomość parametrów dostaw i różnych ich wariantów, umożliwiają zrozumienie i sparametryzowanie pewnego zakresu niepewności, a tym samym zamienia niepewność w ryzyko oraz wywołują efekt synergiczny w zakresie skuteczności zarządzania ryzykiem.

Odpowiednio zbudowany model symulacyjny umożliwia zbadanie działania układu na drodze doświadczalnej (obliczeniowej) bez konieczności budowy modelu fizycznego. Podejście takie umożliwia dowolną modyfikację parametrów modelu, typów i wartości wielkości wejściowych oraz wyznaczenie interesujących nas wielkości wyjściowych w sposób niewymagający dodatkowych nakładów finansowych.

Dzięki zastosowaniu symulacji komputerowych, można zapobiec powstawaniu niepotrzebnych zastojów, istnieniu waskich gardel, występowania wszelakiego ryzyka czy pojawiania się zagrożeń w ciągłości produkcji w łańcuchach dostaw. Nawet w okresie szczytu sezonu, który charakteryzuje się maksymalnym, niespodziewanym popytem, występującym w każdej z branż, zwłaszcza tych zależnych stricte od warunków atmosferycznych i zachowań ludzkich, jak w branży nawozowej.

Bibliografia

Bagchi, P.K. (2000). On measuring supply chain competency of nations: A developing country perspective. Cardiff: LERC.
Banks, J., Carson, J., Nelson, B. (2001). Discrete-event System Simulation. 3rd editio. New York: Prentice Hall.
Biswas, S., Narahari, Y. (2004). Object Oriented Modeling and Decision Support for Supply Chains. European Journal of Operational Research, (153).
Blaik, P. (1997). Logistyka. Warszawa: PWE.

Blaik, P. (2001). Koncepcia zintegrowanego zarzadzania. Logistyka. Warszawa: PWE.
Chang, Y., Makatsoris, H. (2000). Supply Chain Modeling Using Simulation. International Journal of Simulation, 2(1).
Christopher, M. (1998). Logistics and supply chain management: Strategies for reducing costs and improving service. London: Financial Times - Prentice Hall.
Ciesielski, M. IV Miedzynarodowa Konferencja Logistics. Katowice 1998.
Cimino, A., Longo, F., Mirabelli, G. (2010). A General Simulation Framework for Supply Chain Modeling: State of the Art and Case Study. IJCSI International Journal of Computer Science Issues, 7(2), 3.
Coyle, J.J., Bardi, E.J., Langley, C.J. (2002). Zarzadzanie logistyczne. Warszawa: PWE.
Ding, H., Benyoucef, L., Xie, X., Hans, C., Schumacher, J. (2004). „One" A New Tool For Supply Chain Network Optimization and Simulation. Paper presented at the Proceedings of the 2004 Winter Simulation Conference.
Ferstch, M. (1998). IV Miedzynarodowa Konferencja Logistics. Katowice.
Ganapathy, S., Narayanan, S., Srinivasan, K. (2003). Simulation Based Decision Support for Supply Chain Logistics. Paper presented at the Proceedings of the 2003 Winter Simulation Conference.
Hanczar, P. (2007). Symulaça - narzędzie analizy przeplywu towarów w systemie dystrybucyjnym. Logistyka, (5).
Henderson, S.G., Biller, B., Hsieh, M.-H., Shortle, J., Tew, J.D., Barton, R.R. (2007). Supply chain simulation modeling made easy: an innovative approach. Paper presented at the Proceedings of the 2007 Winter Simulation Conference.
Jung, J.Y., Blau, G., Pekny, J., Gintaras, F., Reklaitis, V., Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers and Chemical Engineering, (28).
Kapusta, F. (2003). Teoria agrobiznesu. Wroctaw: Wydawnictwo Akademii Ekonomicznej we Wroctawiu.
Klempka, R., Stankiewicz, A. (2004). Modelowanie i symulacja układów dynamicznych. Kraków: Uczelniane Wydawnictwo Naukowo--Dydaktyczne AGH.
Li J., Sheng, Z., Liu, H. (2010). Multi-agent simulation for the dominant players' behavior in supply chains. Simulation Modelling Practice and Theory, (8).
Min, H., Zhou, G. (2002). Supply chain modeling past, present and future. Computers \& Industrial Engineering, (43).
O'Kane, J.F., Spenceley, J.R., Taylor, R. (2000). Simulation as an essential tool for advanced manufacturing technology problems. Journal of Materials Processing Technology, (107).
Peidroa, D., Mulaa, J., Polera, R., Verdegayb J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, (160).
Petrovic, D., Roy, R., Petrovic, R. (1998). Modelling and simulation of a supply chain in an uncertain environment. European Journal of Operational Research, (109)
Terzi, S., Cavalieri, S. (2004). Simulation in the supply chain context: a survey. Computers in Industry, (53).
Wang, Q., Chatwin, C.R. (2005). Key issues and developments in modelling and simulation-based methodologies for manufacturing systems analysis, design and performance evaluation. International Journal of Advanced Manufacturing Technology, (25).
Wanga, J., Shub, Y.-F. (2005). Fuzzy decision modeling for supply chain management. Fuzzy Sets and Systems, (150).

PWE poleca nowość

Ksią̇za jest poświęcona aktualnym problemom społeczno-gospodarczym, relatywnie mało zbadanym, koncentrującym się na obustronnych zależnościach pomiędzy rozwojem innowacyjnej gospodarki i konsumpcji.

W części pierwszej książki określono rolę i znaczenie innowacji w rozwoju społeczno--gospodarczym, zdefiniowano pojęcie innowacyjnej gospodarki i konsumpcji. Pokazano konsumpcję jako ważny czynnik i siłę sprawczą rozwoju społeczno-gospodarczego. W części drugiej została przedstawiona innowacyjność polskiej gospodarki, a także konsumpcja i zachowania konsumentów, ze szczególnym uwzględnieniem aspektu innowacyjności. Analiza tych zjawisk stanowi ilustrację niskiego poziomu innowacyjności gospodarki, a także innowacyjności konsumpcji i zachowania konsumentów.

Oceniając taką sytuację w ujęciu przyczynowo-skutkowym, można wyrazić to następująco:
\checkmark nie ma innowacyjnej gospodarki bez innowacyjnego społeczeństwa,
\checkmark nie ma innowacyjnego społeczeństwa bez innowacyjnej konsumpcji
\checkmark i nie ma innowacyjnej konsumpcji bez inwestowania w człowieka.
Droga do poprawy sytuacji wiąże się ze wzrostem inwestycji w kapitał ludzki, społeczny oraz intelektualny i jest jednocześnie konsekwentnym wdrażaniem polityki innowacyjnej, opartej między innymi na innowacyjnym społeczeństwie i jego konsumpcji.

Księgarnia internetowa www.pwe.com.pl

[^0]: Źródlo: Bagchi, 2000; Christopher, 1998; Ferstch, 1998; Blaik, 2001; Blaik, 1997; Ciesielski, 1998; Coyle, Bardi, Langley, 2002.

[^1]: Źródło: opracowanie wlasne.

[^2]: Źródło: opracowanie wlasne.

