PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Polypropylene Fibre Geometry on the Mechanical Properties of Cement Mortars

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ geometrii włókien polipropylenowych na właściwości mechaniczne zapraw cementowych
Języki publikacji
EN
Abstrakty
EN
In this study, fibrillated polypropylene fibres and fibres with a round and five-arm star cross section were produced. The fibres were chopped to specified lengths and used for the reinforcement of cement mortars. Mortars containing different dosages of fibres were prepared. The compression and bending strength of the mortars were determined and it was noted that the fibres do not affect the compressive strength of the mortars. For reinforced mortars, regardless of the fibre geometry and dosage, the compressive strength is comparable with that of plain mortar. The fibres influence the bending strength of the mortars. For mortars reinforced with fibrillated fibres a significant increase in the bending strength was observed. For mortars which contained other fibres, the effect of the reinforcement on the bending strength was less visible. The increase in the bending strength was explained by the fibre/matrix interaction.
PL
Wyprodukowano polipropylenowe włókna fibrylizowane oraz polipropylenowe włókna o przekroju okrągłym i gwiaździstym. Włókna pocięte na odcinki o określonej długości zastosowano do zbrojenia zapraw cementowych. Wyprodukowano kształtki wykonane z zapraw o różnej zawartości włókien. W czasie badań wyznaczono wytrzymałość kształtek na ściskanie i zginanie. Stwierdzono, że dodatek włókien nie wpływa na wytrzymałość zapraw na ściskanie. Niezależnie od geometrii włókien i ich zawartości wytrzymałość na ściskanie zapraw zbrojonych włóknami jest identyczna z wytrzymałością zapraw niezbrojonych. Natomiast dodatek włókien prowadzi do zmiany wytrzymałości zapraw na zginanie. Dla zapraw zbrojonych włóknami fibrylizowanymi wzrost wytrzymałości na zginanie sięga kilkunastu procent. Dla zapraw zbrojonych pozostałymi włóknami wpływ włókien jest mniej znaczący. Wzrost wytrzymałości na zginanie wyjaśniono w oparciu o oddziaływania pomiędzy włóknami i matrycą cementową.
Rocznik
Strony
123--129
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Bielsko-Biała, Poland
  • Institute of Textile Engineering and Polymer Materials, University of Bielsko-Biala, Bielsko-Biała, Poland
Bibliografia
  • 1. Bentur A. Mindess S. Fibre reinforced cementitious composites. Taylor & Francis, London, 2007.
  • 2. Zheng Z, Feldman D. Synthetic fibre – reinforced concrete. Progress in Polymer Science 1995; 20: 185-210.
  • 3. Song PS, Hwang S, Sheu BC. Strength properties of nylon and polypropylene fibre reinforced concretes. Cement and Concrete Research 2005; 35: 1546-1550.
  • 4. Zhang S, Zhao B. Effect of polypropylene fibres on the toughness of concrete materials. Advanced Materials Research 2012; 535-537: 1965-1968.
  • 5. Segre N, Tonella E, Joekes I. Evaluation of the Stability of Polypropylene Fibres in Environments Aggressive to CementBased Materials. Cement and Concrete Research 1998; 28: 75-81.
  • 6. Alz T, Sanjazan JG, Collins F. Effect of polypropylene fibres on shrinkage and cracking of concretes. Materials and Structures 2008; 41: 1741-1753.
  • 7. Barluenga G. Fibre-matrix interaction at early ages of concrete with short fibres. Cement and Concrete Research 2010; 40: 802-809.
  • 8. Sun Z, Xu Q. Microscopic, physical and mechanical analysis of polypropylene fibre reinforced concrete. Materials Science and Engineering 2009; A 527: 198- 204.
  • 9. Kakooei S, Md Akil H, Jamshidi M, Rouhi J. The effects of polypropylene fibres on the properties of reinforced concrete structures. Construction and Building Materials 2012; 27: 73-77.
  • 10. Cifuentes H., Garcia F, Maeso O, Medina F. Influence of the properties of poly propylene fibres on the fracture behaviour of low-. normal- and high-strength FRC. Construction and Building Materials 2013; 45: 130-137.
  • 11. Khaliq W, Kodur V. Thermal and mechanical properties of fibre reinforced high performance self-consolidating concrete at elevated temperatures. Cement and Concrete Research 2011; 41: 1112-1122.
  • 12. Liu X, Ye G, De Schutter G, Yuan Y, Taerwe L. On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high-performance cement paste. Cement and Concrete Research 2008; 38: 487-499.
  • 13. Pakravan HR, Jamshidi M, Latifi M, Pacheco-Torgal F. Cementitious Composites Reinforced With Polypropylene, Nylon and Polyacrylonitile Fibres. Materials Science Forum 2013; 730-732: 271-276.
  • 14. Li VC, Stang H. Interface Property Characterization and Strengthening Mechanisms in Fibre Reinforced Cement Based Composites. Advanced Cement Based Materials 1997; 6: 1-20.
  • 15. Yue CY, Cheung WL. Interfacial properties of fibre-reinforced composites. Journal of Material Science 1992; 27: 3843- 3855.
  • 16. Singh S, Shukla A, Brown R. Pullout behaviour of polypropylene fibres from cementitious matrix. Cement and Concrete Research 2004; 34: 1919-1925.
  • 17. Tu L, Kruger D, Wagener JB, Cartens PAB. Wettability of Surface Oxyfluorinated Polypropylene fibres and Its Effect on Interfacial Bonding with Cementitious Matrix. Journal of Adhesion 1997; 62: 187-211.
  • 18. Broda J, Przybylo S, Lewandowski S. Selection of Optimal Formation Parameters of Polypropylene Fibrillated Fibres Designed for Concrete Reinforcement. Fibres & Textiles in Eastern Europe 2012; 95: 69-74.
  • 19. Bhat NV, Upadhyay DJ. Plasma induced surface modification and adhesion enhancement of polypropylene surface. Journal of Applied Polymer Science 2001; 86: 925-936.
  • 20. Inagaki N, Tasaka S, Imai M. Hydrophilic surface modification of polypropylene films by CCl4 plasma. Journal of Applied Polymer Science 1993; 48: 1963-1972.
  • 21. Felekoglu B, Tosun K, Baradan B. A comparative study on the bending performance of plasma treated polypropylene fibre reinforced cementitious composites. Journal of Materials Processing Technology 2009; 209: 5133-5144.
  • 22. Lopez-Buendia AM, Romero-Sanchez MD, Climent V, Guillem C. Surface treated polypropylene (PP) fibres for reinforced concrete. Cement and Concrete Research 2013; 54: 29-35.
  • 23. Bangi MR, Horiguchi T. Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cement and Concrete Research 2012; 42: 459-466.
  • 24. Banthia N, Gupta R. Influence of polypropylene fibre geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research 2006; 36: 1263-1267.
  • 25. Behdouj Z, Jamshidi M, Latifi M, Halvaei M. Effect of cross sectional shape of polypropylene fibres on bending toughness of composites and fibre-to-cement matrix adhesion. Advanced Materials Research 2013; 687: 485-489.
  • 26. Richardson AE. Compressive strength of concrete with polypropylene fibre additions. Structural Survey 2006; 24: 138-153.
  • 27. Mindess S, Vondran G. Properties of concrete reinforced with fibrillated fibres under impact loading, Cement and Concrete Research 1988; 18: 109-115.
  • 28. Parveen, A. Sharma, Structural Behaviour of Fibrous Concrete Using Polypropylene Fibres. International Journal of Modern Engineering Research 2013; 3: 1279-1282.
  • 29. Alhozaimy AM, Soroushian P, Mirza F. Mechanical Properties of Polypropylene Fibre Reinforced Concrete and the Effects of pozzolanic materials. Cement and Concrete Research 1996; 18: 85-92.
  • 30. Aulia TB. Effects of polypropylene fibres on the properties of high-strength concretes. Lacer 2002; 7: 43-59.
  • 31. Nanni A, Meamarian N. Distribution and opening of fibrillated polypropylene fibres in Concrete. Cement and Concrete Research 1991; 13: 107-114.
  • 32. Bentur A, Mindess S, Vondran G. Bonding in polypropylene fibre reinforced concretes. International Journal of Cement Composites and Lightweight Concrete 1989; 11: 153-158.
  • 33. Stanisz A. Przystępny kurs statystyki na przykładach z medycyny z wykorzystaniem programu STATISTICA, t. II, ed. II, Statsoft, Kraków 2006.
  • 34. Lewandowski S, Drobina R, Józkowicz I. Comparative Analysis of the Ring Spinning Process, Both Classic and Compact: Theoretical Reflections. Part I: Elaboration of the Statistical Model Based on Multiple Regression. Fibers & Textiles in Eastern Europe 2010; 4 (81): 20-24.
  • 35. Zollo RF. Fibre-reinforced Concrete: an Overview after 30 Years of Development. Cement and Concrete Composites 1997; 19: 107-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8328b1ab-fe8c-4584-a96a-806c914720c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.