PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research of the physical properties of bio-based building materials with phase change material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of experimental measurements of the physical properties of new environmentally friendly bio-based composite building materials containing hemp shives bonded with a magnesium binder. Some of the tested materials contained an admixture of phase change material (PCM) of variable proportions in the binder to increase the heat capacity of building elements (walls), which can positively affect room temperature regulation. Densities and porosities are key parameters describing building materials, directly affecting mechanical, acoustic, and, most importantly, hygrothermal properties, including thermal conductivity, water vapor permeability, water absorptivity, and sorption curves. The experiment was carried out for ten different samples of bio-based building composites, differing in the bulk density obtained during the manufacturing process and in the PCM proportion. As part of the experiment, true density tests were conducted on a helium pycnometer. Then, the geometric densities of the tested materials (which may differ from the bulk density obtained during production) were measured using the Archimedes method, making it possible to obtain the total, closed, and open porosity values. Tests were also carried out for selected traditional building materials, such as red brick and autoclaved aerated concrete, to compare the results obtained.
Rocznik
Strony
57--66
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Riga Technical University, Faculty of Civil Engineering, Institute of Materials and Structures, Kalku 1, LV-1658 Riga, Latvia
autor
  • Riga Technical University, Faculty of Civil Engineering, Institute of Materials and Structures, Kalku 1, LV-1658 Riga, Latvia
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Institute of Heat Engineering, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] Jami, T., Karade, S.R., & Singh, L.P. (2019). A review of the properties of hemp concrete for green building applications. Journal of Cleaner Production, 239, 117852. doi: 10.1016/J.JCLEPRO.2019.117852
  • [2] Ahmed, A.T.M.F., Islam, M.Z., Mahmud, M.S., Sarker, M.E., & Islam, M.R. (2022). Hemp as a potential raw material toward a sustainable world: A review. Heliyon, 8(1), e08753. doi:10.1016/J.HELIYON.2022.E08753
  • [3] Wu, D., Rahim, M., El Ganaoui, M., Bennacer, R., Djedjig, R., & Liu, B. (2022). Dynamic hygrothermal behavior and energy performance analysis of a novel multilayer building envelope based on PCM and hemp concrete. Construction and Building Materials, 341, 127739. doi: 10.1016/J.CONBUILDMAT.2022.127739
  • [4] Rathore, P.K.S., & Shukla, S.K. (2021). Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review. Energy and Buildings, 236, 110799. doi: 10.1016/J.ENBUILD.2021.110799
  • [5] Lamrani, B., Johannes, K., & Kuznik, F. (2021). Phase change materials integrated into building walls: An updated review. Renewable and Sustainable Energy Reviews, 140, 110751. doi:10.1016/J.RSER.2021.110751
  • [6] Bennai, F., Ferroukhi, M.Y., Benmahiddine, F., Belarbi, R., & Nouviaire, A. (2022). Assessment of hygrothermal performance of hemp concrete compared to conventional building materials at overall building scale. Construction and Building Materials, 316,126007. doi: 10.1016/J.CONBUILDMAT.2021.126007
  • [7] Brzyski, P., Gładecki, M., Rumińska, M., Pietrak, K., Kubiś, M., & Łapka, P. (2020). Influence of Hemp Shives Size on HygroThermal and Mechanical Properties of a Hemp-Lime Composite. Materials, 13(23), 5383. doi: 10.3390/MA13235383
  • [8] Łapka, P., Brzyski, P., Pietrak, K., Cieślikiewicz, Ł., & Suchorab, Z. (2023). Hygro-thermal characterization of the hemp concrete modified with the gum Arabic admixture. Construction and Building Materials, 368, 130392. doi: 10.1016/J.CONBUILDMAT.2023.130392
  • [9] Zorica, J., Sinka, M., Sahmenko, G., Vitola, L., Korjakins, A., & Bajare, D. (2022). Hemp Biocomposite Boards Using Improved Magnesium Oxychloride Cement. Energies, 15(19), 7320. doi:10.3390/EN15197320/S1
  • [10] Sawadogo, M., Benmahiddine, F., Hamami, A.E.A., Belarbi, R., Godin, A., & Duquesne, M. (2022). Investigation of a novel biobased phase change material hemp concrete for passive energy storage in buildings. Applied Thermal Engineering, 212, 118620.doi: 10.1016/J.APPLTHERMALENG.2022.118620
  • [11] Meng, E., Yu, H., & Zhou, B. (2017). Study of the thermal behavior of the composite phase change material (PCM) room in summer and winter. Applied Thermal Engineering, 126, 212–225. doi: 10.1016/J.APPLTHERMALENG.2017.07.110
  • [12] Ghosn, S., Cherkawi, N., & Hamad, B. (2020). Studies on Hemp and Recycled Aggregate Concrete. International Journal of Concrete Structures and Materials, 14(1), 1–17. doi: 10.1186/S40069-020-00429-6
  • [13] Brzyski, P. (2021). The Influence of Gum Arabic Admixture on the Mechanical Properties of Lime-Metakaolin Paste Used as Binder in Hemp Concrete. Materials, 14(22), 6775. doi: 10.3390/MA14226775
  • [14] Williams, J., Lawrence, M., & Walker, P. (2018). The influence of constituents on the properties of the bio-aggregate composite hemp-lime. Construction and Building Materials, 159, 9–17. doi:10.1016/J.CONBUILDMAT.2017.10.109
  • [15] Li, Y., Pickering, K.L., & Farrell, R. L. (2009). Analysis of green hemp fibre reinforced composites using bag retting and white rot ungal treatments. Industrial Crops and Products, 29(2–3), 420–426. doi: 10.1016/J.INDCROP.2008.08.005
  • [16] Dietrich, F., Łapka, P., Cieślikiewicz, Ł., Furmański, P., Sinka, M., Vitola, L., & Bajare, D. (2021). Micro-scale modeling-based approach for calculation of thermal conductivity of bio-based building composite. AIP Conference Proceedings, 2429, 020023.doi: 10.1063/5.0071466
  • [17] Łapka, P., Dietrich, F., Furmanski, P., Cieslikiewicz, L., Sinka, M., & Bajare, D. (2023). Method for Prediction of Thermal Conductivity of Bio-Based Building Composites Enhanced With Microencapsulated PCM. AIP Conference Proceedings, 2801,030020. doi: 10.1063/5.0146677
  • [18] Madsen, B., Thygesen, A., & Lilholt, H. (2009). Plant fibre composites – porosity and stiffness. Composites Science and Technology, 69(7–8), 1057–1069. doi: 10.1016/J.COMPSCITECH.2009.01.016
  • [19] Degrave-Lemeurs, M., Glé, P., & Hellouin de Menibus, A. (2018). Acoustical properties of hemp concretes for buildings thermal insulation: Application to clay and lime binders. Construction and Building Materials, 160, 462–474. doi: 10.1016/ J.CONBUILDMAT.2017.11.064
  • [20] Chikhi, M. (2020). Effective thermal conductivity of porous biomaterials: Numerical investigation. Journal of Building Engineering, 32, 101763. doi: 10.1016/J.JOBE.2020.101763
  • [21] Li, Z.J., Huang, Z.W., Dai, H.L., Yao, Y., & Li, Y.S. (2024). Hygrothermal coupled modeling and behavior analysis of natural fiber-reinforced tubular composites. Construction and Building Materials, 411, 134384. doi: 10.1016/J.CONBUILDMAT.2023.134384
  • [22] Chikhi, M., Agoudjil, B., Boudenne, A., & Gherabli, A. (2013). Experimental investigation of new biocomposite with low cost for thermal insulation. Energy and Buildings, 66, 267–273. doi:10.1016/J.ENBUILD.2013.07.019
  • [23] Frantz, N., Dutra, L.F., Nguyen, D.M., Almeida, G., & Perré, P. (2024). Effects of phase ratios, density and particle shapes on directional thermal conductivity of vegetable concrete: A predictive model. Construction and Building Materials, 410, 134238. doi:10.1016/J.CONBUILDMAT.2023.134238
  • [24] Glé, P., Lecompte, T., Hellouin de Ménibus, A., Lenormand, H., Arufe, S., Chateau, C., Fierro, V., & Celzard, A. (2021). Densities of hemp shiv for building: From multiscale characterisation to application. Industrial Crops and Products, 164, 113390. doi:10.1016/J.INDCROP.2021.113390
  • [25] Collet, F., Bart, M., Serres, L., & Miriel, J. (2008). Porous structure and water vapour sorption of hemp-based materials. Construction and Building Materials, 22(6), 1271–1280. doi: 10.1016/J.CONBUILDMAT.2007.01.018
  • [26] Abbas, M.S., Gourdon, E., Glé, P., McGregor, F., Ferroukhi, M. Y., & Fabbri, A. (2021). Relationship between hygrothermal and acoustical behavior of hemp and sunflower composites. Building and Environment, 188, 107462. doi: 10.1016/J.BUILDENV.2020.107462
  • [27] Lawrence, M., & Jiang, Y. (2017). Porosity, pore size distribution, micro-structure. RILEM State-of-the-Art Reports, 23, 39–71. doi: 10.1007/978-94-024-1031-0_2
  • [28] Wei, Y., Song, C., Chen, B., & Ahmad, M.R. (2019). Experimental investigation on two new corn stalk biocomposites based on magnesium phosphate cement and ordinary Portland cement. Construction and Building Materials, 224, 700–710. doi:10.1016/J.CONBUILDMAT.2019.07.100
  • [29] Brewer, C.E., Chuang, V.J., Masiello, C.A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K., & Davies, C.A. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176–185. doi:10.1016/J.BIOMBIOE.2014.03.059
  • [30] Jiang, Y., Ansell, M.P., Jia, X., Hussain, A., & Lawrence, M. (2017). Physical characterisation of hemp shiv: cell wall structure and porosity. Academic Journal of Civil Engineering, 35(2), 22–28. doi: 10.26168/ICBBM2017.1
  • [31] Delannoy, G., Marceau, S., Glé, P., Gourlay, E., GuéguenMinerbe, M., Diafi, D., Nour, I., Amziane, S., & Farcas, F. (2019). Influence of binder on the multiscale properties of hemp concretes. European Journal of Environmental and Civil Engineering, 23(5), 609–625. doi: 10.1080/19648189.2018.1457571
  • [32] Ferroukhi, M. Y., Mesticou, Z., & Si Larbi, A. (2023). Impact of microencapsulated phase change material on a bio-based building composite, hygrothermal and mechanical behavior. Construction and Building Materials, 409, 133925. doi: 10.1016/J.CONBUILDMAT.2023.133925
  • [33] Sahmenko, G., Sinka, M., Paurins, U., & Bajare, D. (2023). Production Technology of Ecological High Performance Fibre Composite Construction Materials. Journal of Physics: Conference Series, 2423, 012005. doi: 10.1088/1742-6596/2423/1/012005
  • [34] Seng, B., Magniont, C., & Lorente, S. (2019). Characterization of a precast hemp concrete. Part I: Physical and thermal properties. Journal of Building Engineering, 24, 100540. doi: 10.1016/J.JOBE.2018.07.016
  • [35] Rahim, M., Douzane, O., Tran Le, A. D., Promis, G., & Langlet, T. (2016). Characterization and comparison of hygric properties of rape straw concrete and hemp concrete. Construction and Building Materials, 102, 679–687. doi: 10.1016/J.CONBUILDMAT.2015.11.021
  • [36] Gourlay, E., Glé, P., Marceau, S., Foy, C., & Moscardelli, S. (2017). Effect of water content on the acoustical and thermal properties of hemp concretes. Construction and Building Materials, 139, 513–523. doi: 10.1016/J.CONBUILDMAT.2016.11.018
Uwagi
[1] This work was supported by the NCBiR (Poland) under M-ERA.NET 2 grant No. M-ERA.NET2/2019/4/2020 “Manufacturing technology of building products made of ecological high-performance fibre composites with encapsulated PCM for the NZEB application, HEMP4NZEB”.
[2] Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-832756b2-ad4e-47df-a4f5-567bb27475d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.