PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wytwarzanie chłodu z ciepła sieciowego w Zielonej Górze

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The chilled water production using a heat from district heating system in Zielona Góra
Języki publikacji
PL
Abstrakty
PL
W publikacji przedstawiono możliwości zastosowania adsorpcyjnych agregatów chłodniczych do produkcji chłodu na potrzeby klimatyzacji budynków przy wykorzystaniu ciepła sieciowego, produkowanego i dystrybuowanego w miejskim, scentralizowanym systemie ciepłowniczym w Zielonej Górze. Omówiono sposób racjonalnego doboru mocy chłodniczej dla obiektu przy zastosowaniu symulacji komputerowej, opisano zrealizowany w ramach projektu badawczo-wdrożeniowego węzeł cieplno-chłodniczy z agregatem adsorpcyjnym oraz zaprezentowano wstępne wyniki jego pracy.
EN
The paper presents the possibility of using an adsorption chiller for chilled water production for air conditioning system in building, using heat produced and distributed in the district heating system in Zielona Gora. In the article authors discusses a method of rational determination of cooling power for the building, using of computer simulation, describes a heat and cooling substation which was realized during a research project in Zielona Góra. In the paper, authors also describes preliminary results of this substation exploitation.
Czasopismo
Rocznik
Tom
Strony
38--43
Opis fizyczny
Bibliogr. 33 poz., fot., rys., wykr.
Twórcy
autor
  • Uniwersytet Zielonogórski, Zielona Góra
  • Uniwersytet Zielonogórski, Zielona Góra
autor
  • Elektrociepłownia „Zielona Góra” S.A. (Grupa EDF), Zielona Góra
Bibliografia
  • [1] Aberg M., Widen J., Henning D. Sensitivity of district heating system operation to heat demand reductions and electricity price variations: A Swedish example, Energy (41), 2012, pp. 525-540
  • [2] Alanne K., Saari A. Distributed energy generation and sustainable development, Renewable and Sustainable Energy Reviews (10), 2006, pp. 539-558
  • [3] Bakker E., de Boer R., Developing a silicagel-water adsorption chiller for microtrigeneration, 9th International IEA Heat Pump Conference, 9, 2008, pp. 1-7
  • [4] Bojic M., Despotovic M. Influence of duration of thermal comfort provision on heating behavior of buildings, Energy Conversion and Management (48), 2007, pp. 2416-2423
  • [5] Carles B. J., Ortega-Lopez V., Coronas A., Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant, Applied Energy (86), 2009, pp. 837-847
  • [6] Chen S., Yoshino H., Levine M. D., Li Z. Contrastive analyses on annual energy consumption characteristics and the influence mechanism between new and old residential buildings in Shanghai, China, by the statistical methods, Energy and Buildings (41), 2009, pp. 1347-1359
  • [7] Ericsson K. Introduction and development of the Swedish district heating systems, Lund University, Sweden, 2009
  • [8] Fahlen E., Trygg L., Ahlgren E. O., Assessment of absorption cooling as a district heating system strategy - a case study, Energy Conversion and Management (60), 2012, pp. 115-124
  • [9] Gadd H. and Werner S. Daily heat load variations in Swedish district heating systems, Applied Energy (106), 2013, pp. 47-55
  • [10] Genon G., Torchio M. F., Poggio A., Poggio, M. Energy and environmental assessment of small district heating systems: Global and local effects in two case-studies, Energy Conversion and Management (50), 2009, pp. 522-529
  • [11] Gustafsson S.-I., RonnqvistM. Optimo!healing of large block of flats, Energy and Buildings (40), 2008, pp. 1699-1708
  • [12] Gustavsson L, Dodoo A., Truong N. L, Danielski I. Primary energy implications of end-use energy efficiency measures in district heated buildings, Energy and Buildings (Energy and Buildings), 2011, pp. 38-48
  • [13] Keil C, Plura S., Radspieler M., Schweigler, C. Application of customized absorption heat pumps for utilization of low-grade heat sources, Applied Thermal Engineering (28), 2008, pp. 2070-2076
  • [14] Krauchi R, Dorer V., Energetic and environmental performance evaluation of micropoiygeneration systems for small office buildings, Micro-Cogen, 2008
  • [15] Lamp R, Schweigler C, Ziegler R, Opportunities for sorption cooling using low grade heat, Applied Thermal Engineering (18), 1998, 755-764
  • [16] Li Y, Ru L, Zhang S., Jiang Y., Xiling Z. A new type of district heating method with co-generation based on absorption heat exchange (co-ah cycle), Energy Conversion and Management (52), 2011, pp. 1200-1207
  • [17] Li Y, Fu L, Zhang $., Zhao, X. A new type of district heating system based on distributed absorption heat pumps, Energy (36), 2011, pp. 4570-4576
  • [18] Liu M., Shi Y, Rang R, A new operation strategy for CCHP systems with hybrid chillers, Applied Energy (95), 2012, pp. 164-173
  • [19] Lund H., Mathiesen B. Y Energy system analysis of 100% renewable energy system - The case of Denmark in years 2030 and 2050, Energy (34), 2009, pp. 524-531
  • [20] Lund H., Moller B., Mathiesen B., Dyrelund A. The role of district heating in future renewable energy systems, Energy (35), 2010, pp. 1381-1390
  • [21] Lygnerud K., Peltola-Ojala P. Factors impacting district heating companies' decision to provide small house customers with heat, Applied Energy (87), 2010, pp. 185-190
  • [22] Mostofizadeh C, Bohne D., Mergardt C, Use of district heating in summer for cold production with the aid of an absorption process, Applied Thermal Engineering (22), 2002, pp. 577-589
  • [23] Munster M., Morthorst P. E., barsen H. V, Bregnbaek L, Werling J., Undboe H. H., Ravn, H. The role of district heating in the future Danish energy system, Energy (48), 2012, pp. 47-55
  • [24] Nassen J., Holmberg J. On the potential tradeoffs between energy supply and end-use technologies for residential heating, Energy Policy (59), 2013, pp. 470-480
  • [25] Nilsson S. F., Reidhav C, Lygnerud K., Werner, S. Sparse district-heating in Sweden, Applied Energy (85), 2008, pp. 555-564
  • [26] Ortiga J., Bruno J. C, Coronas A., Operational optimisation of a complex trigeneration system connected to a district heating and cooling network, Applied Thermal Engineering (50), 2013, pp. 1536-1542
  • [27] Persson U., Werner S., District heating in sequential energy supply, Applied Energy (95), 2012, pp. 123-131
  • [28] Persson U., Werner S., Heat distribution and the future competitiveness of district heating, Applied Energy (88), 2011, pp. 568-576
  • [29] Rezaie B., Rosen M. A., District heating and cooling: Review of technology and potential enhancements, Applied Energy (93), 2012, pp. 2-10
  • [30] Rubik M., Produkcja chłodu w systemach ciepłowniczych - konieczność czy potrzeba biznesowa? Część I, Ciepłownictwo, Ogrzewnictwo, Wentylacja (43), 2012, pp. 474-479
  • [31] Rubik M., Produkcja chłodu w systemach ciepłowniczych - konieczność czy potrzeba biznesowa? Część II, Ciepłownictwo, Ogrzewnictwo, Wentylacja (43), 2012, 519-525
  • [32] Stevanovic V. D., Zivkovic B., Prica $., Maslovaric B., Karamarkovic V, Trkulja V., Prediction of thermal transients in district heating systems, Energy Conversion and Management (50), 2009, pp. 2167-2173
  • [33] Trygg L, Amiri S., European perspective on absorption cooling in a combined heat and power system - a case study of energy utility and industries in Sweden, Applied Energy (84), 2007, pp. 1319-1337
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83262e06-3ccb-490a-bfa7-d79d5244382d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.