PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non-destructive measurements of fuel cladding thickness

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method of non-destructive measuring the thickness of small-diameter thin-walled pipes consists of using the resonant frequency of vibrations in the plane of the pipe cross-section to determine the pipe wall thickness. The relative ratio of the measured frequencies determines the thickness of the thin-walled pipe with great accuracy. For small pipe diameters, the method achieves the most accurate results. The accuracy of the measurement is directly dependent on the thickness of the pipe wall and for very thin walls the method achieves the highest accuracy. The invention relates to a method of non-destructively measuring the thickness of pipes that can only be accessed from the outside or just possibly from the inside. Particularly good results are obtained with thin-walled pipes of small diameter, such as nuclear fuel cladding or steam generator pipes. Measurement of the cladding thickness is important for downstream activities such as nuclear fuel inspec-tions or thermomechanical calculations. The non-destructive form of measuring the thickness of thin-walled components such as fuel claddings opens the possibility of expanding activities within the inspection of energy equipment to other areas of industry, testing, or structural diagnostics.
Rocznik
Strony
243--250
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Research Centre Řež, Hlavni 130, 250 68 Husinec-Řež, Czechia
  • ÚJV Řež, a. s., Hlavni 130, 250 68 Husinec-Řež, Czechia
  • Research Centre Řež, Hlavni 130, 250 68 Husinec-Řež, Czechia
autor
  • Research Centre Řež, Hlavni 130, 250 68 Husinec-Řež, Czechia
  • Research Centre Řež, Hlavni 130, 250 68 Husinec-Řež, Czechia
  • Research Centre Řež, Hlavni 130, 250 68 Husinec-Řež, Czechia
Bibliografia
  • [1] Lee, Y.S., Park, S.J., So, W.J., & Joo, Y.S. (2016). A cladding thickness measurement of the research reactor fuel plate using nondestructive testing method. European Research Reactor Conference, Conference Proceedings, 13-17 March, Berlin, Ger-many.
  • [2] Park, J.W., Ko, D., Jang, H., Kim, H., Lee, J., & Choi, W. (2024). Algorithm for estimating Cr coating thickness for accident tolerant fuel cladding using a pancake ECT sensor. Nuclear Engineering and Technology. doi: 10.1016/j.net.2024.09.019
  • [3] Guo, J., Xu, Y., Pan, B., Zhang, J., Kang, R., Huang, W., & Du, D. (2021). A new method for precision measurement of wall-thickness of thin-walled spherical shell parts. Micromachines 12(5), 467. doi: 10.3390/mi12050467
  • [4] Meng, L., Liu, H., Zhang, T., Bo, Q., Li, T., & Wang, Y. (2019) Ultrasonic on-machine scanning for thickness measurement of thin-walled parts: modeling and experiments. International Jour-nal of Advanced Manufacturing Technology, 104(5−8), 2061− 2072. doi: 10.1007/s00170-019-04021-5
  • [5] Olympus. (2024). https://www.olympus-ims.com/en/72dl-plus/ #!cms[focus]=cmsContent15237 [accessed 8 Nov. 2024].
  • [6] Majdak, M., Gradziel, S., Zima, W., Cebula, A., Rerak, M., & Kozak-Jagiela, E. (2023). Numerical and experimental analysis of thermal and flow operating conditions of waterwall tubes con-nected by fins. Archives of Thermodynamics, 44(4), 81–102. doi: 0.24425/ather.2023.149719
  • [7] Majkut, M., Dykas, S, & Smołka, K. (2020). Light extinction and ultrasound method in the identification of liquid mass fraction content in wet steam, Archives of Thermodynamics, 41(4), 63–92. doi: 10.24425/ather.2020.135854
  • [8] Liu, H.-B., Wang, Y.-Q., Jia, Z.-Y., & Guo, D.-M. (2015). Integration strategy of on-machine measurement (OMM) and numer-ical control (NC) machining for the large thin-walled parts with surface correlative constraint. International Journal of Advanced Manufacturing Technology, 80, 1721–1731.
  • [9] Naveed, A., Muhammad, A.-N., Ateekh, U.-R., Madiha, R.; Usama, U., & Adham, E.-R. (2021). High aspect ratio thin-walled structures in D2 steel through wire electric discharge machining (EDM). Micromachines, 12, 1. doi: 10.3390/mi12010001
  • [10] Fowler, K.A., Elfbaum, G.M., Smith, K.A., & Nelligan, T.J. (1997). Theory and Application of precision ultrasonic thickness gauging. e-Journal of Nondestructive Testing (eJNDT Articles & News), 2, 10.
  • [11] Vlassopoulos, E., Pautz, A., Papaioannou, D., Fongaro, L., Nasyrow, R., Gretter, R., Somers, J., Rondinella, V.V., Caruso, S., Raffuzzi, V., Grunberg, P., Helfenstein, J., & Schwizer, P. (2018). Mechanical integrity of spent nuclear fuel: from experi-mental to numerical studies. TopFuel – Reactor Fuel Perfor-mance, 30 September - 4 October, Prague, Czech Republic.
  • [12] Megzari, A., Le Clézio, E., Stepnik, B., & Despaux, G. (2022). Fuel plate cladding thickness estimation thanks to acoustic mi-croscopy. 42nd International Meeting on Reduced Enrichment for Research and Test Reactors, 3-5 October, Vienna, Austria.
  • [13] Michau, A., Maskrot, H., Gazal, Y., Maury, F., Duguet, T., Boichot, R., Pons, M., Brachet, J.-C., & Monsifront, E. (2018). Inner surface protection of nuclear fuel cladding, towards a full-length treatment by DLI-MOCVD, an optimized coating process. TopFuel – Reactor Fuel Performance, 30 September - 4 October, Prague, Czech Republic.
  • [14] Namburi, H.K., Halodova, P., Bublikova, P., Janura, R., & Krejčí, J. (2016). Microstructural evaluation of high temperature creep behavior in hydrided E110 cladding. 25th International Conference Nuclear Energy for New Europe, 5-8 September, Portorož, Slovenia.
  • [15] Lee, Y.-H., & Byun T.S. (2015). A comparative study on the wear behaviors of cladding candidates for accident-tolerant fuel. Journal of Nuclear Materials, 465, 857−865. doi: 10.1016/j.jnucmat. 2015.05.017
  • [16] Winter, T.C., Neu, R.W., Singh, P.M., Kolaya, L.E., & Deo, C.S. (2018), Fretting wear comparison of cladding materials for reac-tor fuel cladding application. Journal of Nuclear Materials, 508, 505−515. doi: 10.1016/j.jnucmat.2018.05.069
  • [17] Hlaváč, Z., Pašta, O., Assmann, L., & Kopeć, M. (2024). A method of non-destructive measurement of thickness of light-gauge pipes with a small diameter, Czech Patent 310172, Sep. 12.
  • [18] Bentley Hammer Connect Edition, Celerity and Pipe Elasticity, https://docs.bentley.com/LiveContent/web/Bentley%20HAM-MER%20SS6-v1/en/GUID-860F7792-1873-46A7-A07D-06FB40F62D8B.html [accessed 10 Nov. 2024].
  • [19] Omer, I., Arsenie, D.I., & Florea, M. (2009). The influence of longitudinal elastic systems on the celerity (speed of elastic waves). WIT Transactions on Ecology and the Environment, 125, 393−399. doi: 10.2495/WRM090351
  • [20] Irvine, T. (2014). Ring vibrations modes (Revision D). Vibra-tiondata. http://www.vibrationdata.com/tutorials_alt/ringmode. pdf [accessed 10 Nov. 2024].
  • [21] Álvarez-Arenas, T.G., & Camacho J. (2019). Air-Coupled and Resonant Pulse-Echo Ultrasonic Technique. Sensors (Basel), 19(10), 2221. doi: 10.3390/s19102221
  • [22] Pan, J., Chen, F., Song, Z., & Feng, Y. (2020). Ultrasonic pulse reflection method of thickness measurement system based on FPGA. 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 25-27 Dec., Harbin, China.
  • [23] Scholtz, L.K. (2016). Ultrasonic Pulse-Echo Method, Bayern Collab. https://collab.dvb.bayern/display/TUMzfp/ Ultrasonic+ Pulse-Echo+Method [accessed 10 Nov. 2024].
  • [24] ISO 16809. (2017). Non-destructive testing — Ultrasonic thick-ness measurement (2nd ed.). https://www.iso.org/standard/ 72430.html [accessed 10 Nov. 2024].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8322a6e7-c00f-441b-bd44-b0bce9eb5119
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.