Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Multi-scale geophysical studies were conducted in the central Skellefte district (CSD) in order to delineate the geometry of the upper crust (down to maximum ~ 4.5 km depth) for prospecting volcanic massive sulphide (VMS) mineralization. These geophysical investigations include potential field, resistivity/induced polarization (IP), reflection seismic and magnetotelluric (MT) data which were collected between 2009 and 2010. The interpretations were divided in two scales: (i) shallow (~ 1.5 km) and (ii) deep (~ 4.5 km). Physical properties of the rocks, including density, magnetic susceptibility, resistivity and chargeability, were also used to improve interpretations. The study result delineates the geometry of the upper crust in the CSD and new models were suggested based on new and joint geophysical interpretation which can benefit VMS prospecting in the area. The result also indicates that a strongly conductive zone detected by resistivity/IP data may have been missed using other geophysical data.
Wydawca
Czasopismo
Rocznik
Tom
Strony
2171--2199
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
autor
- Department of Earth Sciences, Division of Geophysics, Uppsala University, Uppsala, Sweden
autor
- Department of Earth Sciences, Division of Geophysics, Uppsala University, Uppsala, Sweden
autor
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
autor
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
autor
- Division of Geosciences and Environmental Engineering, Luleå University of Technology, Luleå, Sweden
Bibliografia
- Allen, R.L., P. Weihed, and S.-Å. Svenson (1996), Setting of Zn–Cu–Au–Ag massive 1256 sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic 1257 arc, Skellefte District, Sweden, Econ. Geol. 91, 6, 1022-1053, DOI: 10.2113/gsecongeo.91.6.1022.
- Bauer, T. (2010), Structural and sedimentological reconstruction of the inverted Vargfors Basin – A base for 4D-modelling, Licentiate Thesis, Luleå University of Technology, Sweden, 44 pp.
- Bauer, T.E., P. Skyttä, R.L. Allen, and P. Weihed (2011), Syn-extensional faulting controlling structural inversion – Insights from the Palaeoproterozoic Vargfors syncline, Skellefte mining district, Sweden, Precambrian Res. 191, 3-4, 166-183, DOI: 10.1016/j.precamres.2011.09.014.
- Bauer, T., P. Skyttä, R. Allen, and P. Weihed (2013), Fault-controlled sedimentation in a progressively opening extensional basin: the Palaeoproterozoic Vargfors basin, Skellefte mining district, Sweden, Int. J. Earth Sci. 102, 2, 385-400, DOI: 10.1007/s00531-012-0808-x.
- Bellefleur, G., E. Schetselaar, D. White, K. Miah, and P. Dueck (2015), 3D seismic imaging of the Lalor volcanogenic massive sulphide deposit, Manitoba, Canada, Geophys. Prospect. 63, 4, 813-832, DOI: 10.1111/1365-2478. 12236.
- Bergman Weihed, J. (2001), Palaeoproterozoic deformation zones in the Skellefte and Arvidsjaur areas, northern Sweden. In: P. Weihed (ed.), Economic Geology Research, Vol. 1, Geological Survey of Sweden, C 833, 46-68.
- Billström, K., and P. Weihed (1996), Age and provenance of host rocks and ores in the Paleoproterozoic Skellefte district, northern Sweden, Econ. Geol. 91, 6, 1054-1072, DOI: 10.2113/gsecongeo.91.6.1054.
- Dehghannejad, M., C. Juhlin, A. Malehmir, P. Skyttä, and P. Weihed (2010), Reflection seismic imaging of the upper crust in the Kristineberg mining area, northern Sweden, J. Appl. Geophys. 71, 4, 125-136, DOI: 10.1016/ j.jappgeo.2010.06.002.
- Dehghannejad, M., T.E. Bauer, A. Malehmir, C. Juhlin, and P. Weihed (2012a), Crustal geometry of the central Skellefte district, northern Sweden – constraints from reflection seismic investigations, Tectonophysics 20, 87-99, DOI: 10.1016/j.tecto.2011.12.021.
- Dehghannejad, M., A. Malehmir, C. Juhlin, and P. Skyttä (2012b), 3D constraints and finite difference modeling of massive sulfide deposits: The Kristineberg seismic lines revisited, northern Sweden, Geophysics 77, 5, 69-79, DOI: 10.1190/geo2011-0466.1.
- García Juanatey, M.A. (2012), Seismics, 2D and 3D inversion of magnetotellurics : Jigsaw pieces in understanding the Skellefte Ore District, Ph.D. Thesis, Uppsala University, Uppsala, Sweden.
- Hedin, P., A. Malehmir, D.G. Gee, C. Juhlin, and D. Dyrelius (2013). 3D interpretation by integrating seismic and potential field data in the vicinity of the proposed COSC-1 drill site, central Swedish Caledonides, Geol. Soc. London Spec. Pub. 390, 301-319, DOI: 10.1144/SP390.15.
- Hübert, J., M. García Juanatey, A. Malehmir, A. Tryggavson, and L. Pedersen (2013), The upper crustal 3-D resistivity structure of the Kristineberg area, Skellefte district, northern Sweden revealed by magnetotelluric data, Geophys. J. Int. 192, 2, 500-513, DOI: 10.1093/gji/ggs044.
- Juhlin, C., M. Dehghannejad, B. Lund, A. Malehmir, and G. Pratt (2010), Reflection seismic imaging of the end-glacial Pärvie Fault system, northern Sweden, J. Appl. Geophys. 70, 4, 307-316, DOI: 10.1016/j.jappgeo.2009.06.004.
- Kathol, B., and P. Weihed (eds.) (2005), Description to Regional Geological and Geophysical Maps of the Skellefte District and Surrounding Areas, Sveriges Geologiska Undersökning, Ser. Ba, 197 pp.
- Loke, M.H. (2012), Tutorial: 2-D and 3-D electrical imaging surveys, Geotomo Software, Malaysia.
- Malehmir, A., P. Dahlin, E. Lundberg, C. Juhlin, H. Sjöström, and K. Högdahl (2011), Reflection seismic investigations in the Dannemora area, central Sweden: insights into the geometry of poly-phase deformation zones and magnetite-skarn deposits, J. Geophys. Res. 116, B11, B11307, DOI: 10.1029/2011JB008643.
- Montelius, C., R.L. Allen, S.-Å. Svenson, and P. Weihed (2007), Facies architecture of the Palaeoproterozoic VMS-bearing Maurliden volcanic centre, Skellefte district, Sweden, GFF 129, 3, 177-196.
- Moorkamp, M., B. Heincke, M. Jegen, A.W. Roberts, and R.W. Hobbs (2011), A framework for 3-D joint inversion of MT, gravity and seismic refraction data, Geophys. J. Int. 184, 1, 477-493, DOI: 10.1111/j.1365-246X.2010. 04856.x.
- Nyquist, J.E., and M.J.S. Roth (2005), Improved 3D pole-dipole resistivity surveys using radial measurement pairs, Geophys. Res. Lett. 32, 21, L21416, DOI: 0.1029/2005GL024153.
- Represas, P., F.A. Monteiro Santos, J.A. Ribeiro, A. Andrade Afonso, J. Ribeiro, M. Moreira, and L.A. Mendes-Victor (2015), On the applicability of joint inversion of gravity and resistivity data to the study of a tectonic sedimentary basin in Northern Portugal, Pure Appl. Geophys. 172, 10, 2681-2699, DOI: 10.1007/s00024-014-0920-x.
- Skyttä, P. (2012), Crustal evolution of an ore district illustrated - 4D-animation from the Skellefte district, Sweden, Comput. Geosci. 48, 157-161, DOI: 10.1016/ j.cageo.2012.05.029.
- Skyttä, P., T.E. Bauer, S. Tavakoli, T. Hermansson, J. Andersson, and P. Weihed (2012), Pre-1.87 Ga development of crustal domains overprinted by 1.87 Ga transpression in the Palaeproterozoic Skellefte District, Sweden, Precambrian Res. 206-207, 109-136, DOI: 10.1016/j.precamres.2012.02. 022.
- Smirnov, M. (2003), Magnetotelluric data processing with a robust statistical procedure having a high breakdown point, Geophys. J. Int. 152, 1, 1-7, DOI: 10.1046/j.1365-246X.2003.01733.x.
- Tavakoli, S., S-Å. Elming, and H. Thunehed (2012a), Geophysical modelling of the central Skellefte district, Northern Sweden; an integrated model based on the electrical, potential field and petrophysical data, Appl. Geophys. 82, 84- 100, DOI: 10.1016/j.jappgeo.2012.02.006.
- Tavakoli, S., T.E. Bauer, S.-Å. Elming, H. Thunehed, and P. Weihed (2012b), Regional-scale geometry of the central Skellefte district, northern Swedenresults from 2.5D potential field modeling along three previously acquired seismic profiles, Appl. Geophys. 85, 43-58, DOI: 10.1016/j.jappgeo.2012. 06.012.
- Tavakoli, S., T.E. Bauer, T.M. Rasmussen, P. Weihed, and S.-A. Elming (2016), Deep massive sulphide exploration using 2D and 3D geoelectrical and induced polarization data in Skellefte mining district, northern Sweden, Geophys. Prospect., DOI: 10.1111/1365-2478.12363.
- Weihed, P. (2010), Palaeoproterozoic mineralized volcanic arc systems and tectonic evolution of the Fennoscandian shield: Skellefte district Sweden, GFF 132, 1, 83-91.
- Weihed, P. (2015), 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe, Mineral Resource Reviews, Springer, 331 pp.
- Weihed, P., K. Billstrom, P. Persson, and J. Weihed (2002), Relationship between 1.90-1.85 Ga accretionary processes and 1.82-1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield, J. Geol. Soc. Sweden 124, 3, 163-180.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-831f27f6-4961-434c-a662-1dfa7d3d6c47