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Abstract. The work deals with the issues of modelling of multiscale composites. A group 

of composite structures with a quasi-fractal geometry has been defined. In order to model 

their dynamic properties, a simple engineering method has been proposed. It takes into 

account not only the parameters and proportions of the components of the composite, but 

also their mutual arrangement. The proposed method is demonstrated on several examples 

and its accuracy has been compared with the finite element method and the homogenization 

method. 
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1. Introduction 

1.1. Discussion of the problem 

The problem of searching the entire spectrum of natural frequencies for com-

posites is a difficult issue both numerically and analytically. The internal micro-

structure of the composite has an increasing influence on the sequential natural 

frequencies. The sequential forms of natural vibrations are usually periodic or 

quasi-periodic. The length of their periodicity is of the order of the size of the 

characteristic microstructure of the examined structure. 

The majority of the approximate methods requires the size of the concerned 

body to be much larger than the size of its microstructure [1] or the estimated 

displacement field to be described by a slowly varying function in an area of the 

microstructure [2]. These conditions preclude the direct application of approximate 

methods to the considered issue. 

Composite materials are increasingly used in the modern construction industry. 

Very often their structure is inspired by nature [3] or complicated mathematical 

solutions [4]. In this work, the band plate of the quasi-fractal structure will be 

considered. It can be used for example as roof panels which combine functionality 
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and aesthetics. In such applications, different materials are used, most often light 

transmission glass or a steel or an aluminum matrix to provide durability and 

strength. 

1.2. Definition of quasi-fractal materials 

Let 3RΩ∈  be a body occupying a limited area. In this body we determine 

a subdivision ,Λ ⊂Ω  which is characteristic for a given structure, and we call it 

a basic cell. Let ( )1 2 3, ,Z z z z= ∈Λ  and ( )1 2 3, , iY y y y= ∈Λɶ  be points in the physi-

cal space 3.R  Let ( )F Z  be a function that defines all the local physical parameters 

of the body at the point .Z  By iΛ ⊂ Ωɶ  we denote the similar and scaled area 

in relation to the Λ  satisfying the following conditions: 

 0,iΛ ∩Λ =ɶ  (1) 

 ( ) ( ) ,iY Z F Y F Zκ= ⇔ =  (2) 

where i Rκ ∈  is a number representing the similarity scale between cells Λ  

and .iΛɶ  

The body will be called quasi-fractal if we can find such a basic cell Λ  and we 

choose such a series of similarity scales κi and we define such a series of subareas 

iΛɶ  for that the following conditions are satisfied 

 i

i

Λ Λ ≡ Ωɶ∪∪   (3) 

This means that the whole composite can be divided into cells similar to each 

other with similarity scales .iκ  The examples of such structures are shown 

in Figure 1. In contrast to the standard fractal definition, such structures are always 

finite and in practice they can be used to create engineering constructions. 

 

 

Fig. 1. Examples of quasi-fractal structures 
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Let us note that, in accordance with the above definition, a quasi-fractal structure 

can also be built in a one-dimensional space, which is not possible with a classic 

fractal structure and that a periodic structure is a special case of a quasi-fractal 

structure if 1.i
i
κ∀ ≡  

1.3. Subject, purpose and scope of the paper 

The subject of this paper is a quasi-fractal plate band. The aim of this work is to 

establish a simple and as precise as possible analytical method to find many natural 

frequencies of such a band. It is based on finding a replacement property of the 

plate band taking into account basic cell properties and the structure of the whole 

composite. As a result, every quasi-fractal structure can be reduced to the corre- 

sponding periodic structure by adopting 1.iκ ≡  This method allows one to consider 

the cases in which the microstructure size λ can be comparable with dimension 

which characterizes the natural vibration form of the structure. The proposed 

method, called a hybrid method  later in the work, is illustrated with a few exam-

ples in Section 3. The obtained results will be compared with numerical solutions 

obtained by using the finite element method (FEM) in the Autodesk Simulation 

Multiphysics program of 2013. Its accuracy will be confronted with the classic 

methods of asymptotic homogenization. 

2. Derivation of replacement properties of the plate band taking into 

account the structure of the material 

2.1. Assumptions 

We assume that the frequency of free vibrations of the plate band of the quasi-

fractal construction pΩ  depends mainly on the structure and the material proper-

ties of its basic cell, and the macroscopic dimensions of the band and its support 

conditions, and to a lesser degree, on the distribution of cells and their mutual scale 

similarities. Therefore the following reasoning has been carried out. Let us take the 

band plate of the quasi-fractal construction and the corresponding band plate of the 

periodic construction pΩ  constructed in such a way that the basic cell of the band 

plate of the quasi-fractal construction is identical to the periodicity plate band, 

and a length L of the periodic plate band could be freely adopted so as to satisfy 

the condition L>>λ, where λ is the size of the periodicity cell. For the above plate 

band Ωp we determine the averaged replacement material properties taking into 

account the influence of the microstructure size. We assume that the obtained 

averaged moduli describe the properties of the corresponding plate bands of the 

quasi-fractal construction Ω  with good approximation. 
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2.2. Tolerance averaging technique 

The replacement plate band of the periodic structure pΩ  will be modeled using 

the tolerance averaging technique (TAT). It is a known method of modelling micro- 

structured materials which was proposed by Woźniak and Wierzbicki in [6] and 

it has been used with success in many engineering applications for materials 

of periodic structure [7] and functionally variable structure [8, 9]. It allows one to 

consider the effect of the material microstructure on the macroscopic properties 

of the composite [10]. 

We mention some basic concepts of this technique, e.g. averaging operator, 

a tolerance parameter, a tolerance periodic function, a slowly varying function, 

a highly oscillating function. These definitions will hold for the one-dimensional 

case. The important concept of the TAT is the averaging of an arbitrary integrable 

function ( )f ⋅  over the cell ( )xα∆  [2]: 

 

/2

/2

1( ) ( ) .

x

x

f x f x dx

λ

λ
λ

+

−

< > = ∫  (4) 

The fundamental concept of the tolerance averaging technique is that values 

of functions that belong to region Π  can be determined only within a certain accu-

racy .δ  Let δ  stand for an arbitrary positive number and X  be a linear normed 

space. The tolerance relation ≈  for a certain δ  is defined by 

 2
1 2 1 2 1 2( ( , ) )[ ],

X
x x X x x x x δ∀ ∈ ≈ ⇔ − ≤  (5) 

where δ  is said to be the tolerance parameter. 

Let k f∂  be the k  gradient of function ( ), ,f f= ∈Πx x  0,1,..., ,k α=  ( 0α ≥ ), 
0 .f f∂ ≡  Function ( )f Hα∈ Π  will be called the tolerance periodic function  

(with respect to cell ∆  and tolerance parameter δ ), ( , ),f TPα
δ∈ Π ∆  if for 

0,1,..., ,k α=  the following conditions hold ( ) 0( ) ( ( , ) ( ))kf H∀ ∈Π ∃ ⋅ ∈ ∆x xɶ  

0

( )

( )
[|| ( ) ( , ) || ]k k

H
f f δΠ Π

∂ ⋅ − ⋅ ≤
x x

xɶ , 

 ( ) 0

( )
( , ) ( )kf y dy C

∆ ⋅
⋅ ∈ Π∫ ɶ  (6) 

Function ( ) ( , )kf ⋅xɶ  is referred to as the periodic approximation of k f∂  in 

( ), ,∆ ∈Πx x  0,1,...,k α= . Function ( )F Hα∈ Π  will be called the slowly varying 

function (with respect to the cell ∆  and tolerance parameter δ ), ( , )F SV α
δ∈ Π ∆ ,  

if ( , )F TPα
δ∈ Π ∆ , 

 
( )

( )( ) [ ( , ) | ( ), 0,..., ]k kF F k α∆∀ ∈Π ⋅ = ∂ =xx x xɶ . (7) 
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It can be observed that the periodic approximation ( )kFɶ  of ( )k F∂ ⋅  in ( )∆ x  is 

a constant function for every ∈Πx . If ( ),F SV α
δ∈ Π ∆  then 

  0p = .  (8) 

Function ( )Hαϕ∈ Π  will be called the highly oscillating function (with respect 

to the cell ∆  and tolerance parameter δ ), ( , )HOα
δϕ∈ Π ∆ , if ( , )TPα

δϕ∈ Π ∆ , 

 ( , )( ( , ))F SV f F TPα α
δ δϕ∀ ∈ Π ∆ ≡ ∈ Π ∆ ,  (9) 

and for 1,...,k α=  these functions satisfy the conditions  

 
( )

( )( ) [ ( , ) | ( )],
k kϕ ϕ∆∀ ∈Π ⋅ = ∂xx x xɶ ɶ  (10) 

 
( ) ( )

( ) ( , ) | ( ) ( ) |k kf F ϕ
∆ ∆

⋅ = ∂
x x

x x xɶ ɶ . (11) 

If 0α = , then we denote (0)f f≡ɶ ɶ . 

We denote by ( )φ ⋅  a highly oscillating function, 2 ( , )HOδφ∈ Π ∆ , defined on Π , 

continuous together with gradient 1φ∂ . Let its gradient 2φ∂  be piecewise continu-

ous and bounded. Function ( )φ ⋅  will be called the fluctuation shape function of 

the 2nd kind, if it depends on λ  as a parameter and satisfies the conditions 

1°  ( )k kO αφ λ −∂ ∈  for 1,..., , 2k α α= = ,  (12) 

2°  ( ) 0φ< > ≈x  for every ∆∈Πx .  (13) 

The set of all fluctuation shape functions of the 2nd kind is denoted by 
2 ( , )FSδ Π ∆ . Condition (2º) can be replaced by ( ) 0µφ< > ≈x  for every ∆∈Πx , 

where 0µ >  is a certain tolerance periodic function. 

In order to derive averaged model equations, we apply the tolerance averaging 

approach. The first assumption in the tolerance modelling is the micro-macro 

decomposition of the displacement field 

 0( , ) ( , ) ( ) ( , )A
Aw x t w x t h x V x t= + , 1,...,A N=  (14) 

The modelling assumption states that 0 ( , )w x t , ( , )AV x t  are slowly varying 

functions. Functions 0 2( , ) ( , )w x t SVδ∈ Ω ∆ , 2( , ) ( , )AV x t SVδ∈ Ω ∆  are the basic 

unknowns of the modelling problem. Functions ( )Ah ⋅ , so-called fluctuation shape 

functions, are known and dependent on the microstructure length parameter λ . 
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Let ( )Ah ⋅ɶ , 1 ( )Ah∂ ⋅ɶ  stand for the periodic approximation of ( )Ah ⋅ , 1 ( )Ah∂ ⋅  in ∆ , 

respectively. Due to the fact that ( , )w x t  are tolerance periodic functions, it can be 

observed that the periodic approximation of ( , )hw x t  and ( , )hw x tβ∂  in 1( )ξ∆ , 

1ξ ∈Π  has the form 

 

0

0
1 2

0

( , ) ( , ) ( ) ( , ),

( , ) ( , ) ( ) ( , ) ( ) ( , ),

( , ) ( , ) ( ) ( , ),

A
h A

A A
h A A

A
h A

w y t w x t h y V x t

w y t w x t h y V x t h y V x t

w y t w x t h y V x t

β β

= +

∂ = ∂ + ∂ + ∂

= + ɺɺ ɺ

  (15) 

for every x∈Π , almost every ( )y x∈∆  and every 0 1( , )t t t∈ . 

TAT also defines many assertions. For the purpose of this paper we quote the 

most important: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

,

,

,

F x x F x

F x F x

F x F x

φ φ

φ φ

φ φ

≅

∇ ≅ − ∇

∇ ≅ ∇

  (16) 

where 2 ( , )HOδφ∈ Π ∆  and ( , ).F SV α
δ∈ Π ∆  

2.3. Derivation of the replacement properties of the composite taking 

into account its structure 

The starting point of the modelling procedure is the thin plate equation accord-

ing to Kirchhoff's theory which for the plate band can be written as 

 ( ),11 ,11
Dw w pµ+ =ɺɺ , (17) 

where: 
( )

3

212 1

Eh
D

ν
=

−
 - stiffness of the plate, w - deflection of the plate, hµ ρ= - 

plate mass per unit 2kg m   , p - external load. 

We assume the decomposition of the displacement field in the form: 

 0w w Vg= + . (18) 

By substituting (18) into (17), and transforming it by using the previously 

mentioned theorems of TAT,  the first equation of the model can be obtained 

 
0 0

,1111 ,11 ,11D w Dg V w pµ+ + =ɺɺ . (19) 
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The second equation has been formulated through the orthogonalization method 

by multiplying equation (17) by a test function g, and then by averaging and trans-

forming it, we obtain the following form 

 
0

,11 ,11 ,11 ,11Dg w Dg g V gg V pgµ− − + =ɺɺ . (20) 

Equations (19) and (20) form the equation system of the tolerance averaging 

technique model. We assume that there is no external force and reduce the problem  

to the free vibration 

 ( ) ( ), i tV x t e V xω= ɶ , ( ) ( )0 0, i tw x t e w xω= ɶ , 0p = . (21) 

Moreover, assuming that the periodic plate band pΩ can be built freely to make 

its length sufficiently large in relation to the size characterizing the microstructure, 

we can conclude that the microstructure goes to zero 0λ→ . Therefore the model 

equations are simplified to the form: 

 
0 2 0
,1111 ,11 ,11 0D w Dg V wω µ+ − =ɶɶ ɶ , 

 
0

,11 ,11 ,11 ,11 0Dg w Dg g V+ =ɶɶ . (22) 

From the second equation we can determine the unknown Vɶ  and substitute it 

into the first equation to receive only one equation defining the vibration of such 

a structure: 

 

2

,11 0 2 0
,1111

,11 ,11

0
Dg

D w w
Dg g

ω µ
 
 − − =
 
 

ɶ ɶ . (23) 

When comparing this equation with the classic equation that describes the 

vibrations of a homogeneous plate band, we can define the replacement moduli 

characterizing  the analyzed structure: 

 

2

,11

,11 ,11

eff

Dg
D D

Dg g
= − ,  effµ µ= ,    (24) 

where 

1
D Ddx

λλ
= ∫ , ,11 ,11

1
Dg Dg dx

λλ
= ∫ , 21MNmD = , 

1
dx

λ

µ µ
λ

= ∫   

These moduli are used later to determine the substitute material properties of 

a quasi-fractal plate band taking into account its basic cell construction. 
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2.4. Replacement material properties in the asymptotic homogenization 

The obtained effective moduli will be compared with standard solutions derived 

from asymptotic homogenization. On the basis of this theory, the effective material 

properties of the medium can be defined either in advance or afterwards respec-

tively as the arithmetic and harmonic average, accordingly, taking into account the 

amount of the individual components in the composite. 

 ( ) 1
1 1

1 1 2 2 1 1 2 2
h eff

ijf K f K K K f K f K
−− −+ = ≤ ≤ +  (25) 

This dependency will be used to determine the accuracy of the numerical results 

obtained from the proposed model. Finally, the value of K
eff

 will be calculated 

as the arithmetic average of K
h
 and K

a
. 

3. Numerical examples 

3.1. Material and geometrical data 

In order to illustrate the proposed method, in Table 1, some numerical examples 

were shown. Physical properties of the materials used are shown in Table 1. 

Table 1 

Physical properties of materials used in the examples 

  E [GPa] ρ [kg/m3] ν [–] 

Aluminium  370 3960 0.22 

Steel  207 7855 0.3 

Glass  138 8360 0.317 

 
The same calculation methods are assumed in all three examples. The finite 

element method implemented in the Autodesk Simulation Multiphysics Program 

of 2013 has been used as reference to the calculated frequency values. Next, a few 

selected vibration frequencies and the corresponding vibration forms obtained 

in this program are presented. 

The following notation is introduced: ωFEM is the reference frequency calculated 

from FEM, the vibration ωh is frequency obtained from analytical formulas (27), 

(28) and (31), respectively. The dependence of the accuracy of the solution 

obtained from the proposed method (continuous line) and asymptotic homogeniza-

tion methods (dashed line), depending on the number of  the subsequent values 

of free vibrations will be shown in Figures 4, 7 and 9 respectively for every 

example. 
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3.2. Quasi-fractal symmetrical structure - Example 1 

The first example is a plate band fully fixed on both sides, made from glass and 

aluminum as shown in Figure 2. The overall length of the band is L = 10 m, 

the thickness h = 0.1 m. 

 

 

Fig. 2. Construction of the plate band from Example 1 

For the above basic cell a symmetrical shape function has been taken. The effec- 

tive properties of the plate band are defined by formulas (24) as: 

2
cos

x
g

π
λ

 =  
 

, ,11

MN
13

m
Dg = − , ,11 ,11 3

MN
64

m
Dg g = , 21 MNmD = , 

2

kg
616

m
µ = . 

The plate band is fixed on both sides: 

 0 0
x a

w
=
=ɶ ,

0

0

x a

w

x
=

∂
=

∂

ɶ
, 0

x a
V

=
=ɶ , 0

x a

V

x
=

∂
=

∂

ɶ
, { }0,a L=  (26) 

We use the classic solution derived for a homogeneous plate band: 

 
( )2

2

2 1

8

eff

eff

Dk

L

π
ω

µ

+
=  (27) 

In Figure 3, we can see the best estimate of the value for the selected number 

of natural frequencies and their corresponding forms. 

 

 

Fig. 3. Selected forms of free vibrations for Example 1 
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In Figure 4 we show the accuracy of approximation for the first 17 natural 

frequencies. We can see that the classic asymptotic homogenization method under-

estimates the results, while the accuracy of solutions of the proposed hybrid 

method oscillates within the range of +/– 7%. 

 

 

Fig. 4. Accuracy of solutions obtained from the proposed method (continuous line) 

and the asymptotic method (dashed line) in relation to the FEM 

3.3. Quasi-fractal antisymmetrical structure - Example 2 

The second example is a left-fixed bracket plate bands made of glass and alu-

minum as shown in Figure 5. The overall length of the band L = 20 m, the thick-

ness h = 0.1 m. 
 

 

Fig. 5. Construction of the plate band from Example 2 

For such a proposed basic cell geometry an antisymmetrical shape function has 

been taken in relation to the unit cell. The effective properties of the plate band are 

defined by formulas (24): 

2
sin

x
g

π
λ

 =  
 

, ,11

MN
52

m
Dg = − , ,11 ,11 3

MN
1025

m
Dg g = , 21 MNmD = , 

2

kg
616

m
µ = . 

We use the classic solution derived for a homogeneous bracket band plate: 

 
22

eff

eff

D

L

α
ω

µπ
= , (28) 

whereα is defined by 

 ( ) ( )2cos cos 2 0e eα αα α+ + = . (29) 
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In this case, the hybrid method is the most accurate for the first three natural 

frequencies of the composite (Fig. 6). The accuracy is less than 1% for these 

frequencies. It should be noted that this type of asymmetric multiscale structure 

is very difficult to model by approximate methods. 

 

 

Fig. 6. Selected forms of free vibration for Example 2 

For the entire frequency range, we can see that for the first ten vibration 

frequencies, the accuracy is always better than 5%. As in Example 1, results from 

homogenization methods are underestimated. 

 

 

Fig. 7. Accuracy of solutions obtained from the proposed method (continuous line) 
and the asymptotic method (dashed line) in relation to the FEM (Example 2) 

3.3. Periodic structure - Example 3 

A slightly different situation occurs in the case of periodic systems. Here, due to 

the absence of multiscale effect the influence of the microstructure, size becomes 

visible only for the higher, above 10 order, free frequencies. Let us consider a simply 

supported plate band composed of three materials: glass, steel and aluminum 

of the total length L = 15 m and the thickness h = 0.1 m as shown in Figure 8. 

 

 

Fig. 8. Construction of the periodic band plate 
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For such a proposed basic cell geometry, an antisymmetrical shape function has 

been taken in relation to the unit cell and the effective properties of the plate band 

have not been defined by formulas (24): 

2
sin

x
g

π
λ

 =  
 

, ,11

MN
54.8

m
Dg = − , ,11 ,11 3

MN
3330

m
Dg g = , 23 MNmD = , 

2

kg
608

m
µ = . 

The plate band is simply supported: 

 0 0
x a

w
=
=ɶ , 

2 0

2
0

x a

w

x
=

∂
=

∂

ɶ
, 0

x a
V

=
=ɶ , 

2

2
0

x a

V

x
=

∂
=

∂

ɶ
, { }0,a L= . (30) 

We use the classic solution derived for a homogeneous plate band 

 
2

22

eff

eff

Dk

L

π
ω

µ
= . (31) 

In this case we are not dealing with the multiscale structure, and the proposed 

hybrid method gives slightly worse results. Let us look at Figure 9. For the first 

eight free frequencies, the homogenization method gives much better results than 

the hybrid method. At around the ninth free frequency the accuracy of the homog-

enization method breaks down due to the increasing influence of the microstructure 

size. The hybrid method is more accurate for the 10
th
-14

th
 frequencies. 

 

 

Fig. 9. Accuracy of solutions obtained from the proposed method (continuous line) 

and the asymptotic method (dashed line) in relation to the FEM 
(periodic plate band) 
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4. Conclusions 

As a result of the presented modelling and numerical analysis, we can draw 

the following conclusions: 

1. The presented hybrid method is best-suited for multiscale structures where the 

influence of the microstructure size is significant. In this case, the spectrum 

of the free vibration frequency of such a structure can successfully be obtained 

with a significantly better approximation than in the classic theory. The accuracy 

of this method in the presented examples of quasi-fractal structures was within 

the range of 5-7%. 

2. The obtained solutions are very simple and they can be used directly in engi-

neering practice to estimate the values of the subsequent free vibration frequen-

cies of quasi-fractal structures. 

3. In  case of periodic structures whose periodicity cell size is relatively small, it is 

recommended to use the homogenization methods as they are simpler and more 

accurate in relation to the first free vibration frequencies. Only in the case of 

the analysis of higher frequency vibrations, whose characteristic dimension of 

the form of vibrations is comparable to the microstructure size, can the presented 

hybrid model give more accurate results. 
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