Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Przeciwdrobnoustrojowe właściwości skarpet zabezpieczonych nanosrebrem
Języki publikacji
Abstrakty
Antimicrobial properties of socks containing silver nanoparticles were investigated. Two types of socks were used for testing. The first were linen (100%) socks impregnated with a specimen containing silver nanoparticles. The second type were commercially available cotton (55%) socks containing nanosilver. An antimicrobial effect was assayed against selected Gram-positive and Gram-negative bacteria as well as yeasts. It was found that the specimen used for impregnating linen socks has a wide range of antimicrobial activity against some Gram-positive, Gram-negative bacteria and yeasts - Candida albicans. Antimicrobial effectiveness depended on the type of microorganism, cell number and concentration of silver nanoparticles. Commercially available cotton socks presented antibacterial properties against Staphylococcus epidermidis.
Badano przeciwdrobnoustrojowe właściwości dwóch rodzajów skarpet zawierających cząsteczki nanosrebra. Pierwszy typ stanowiły lniane (100%) skarpetki impregnowane preparatem zawierającym cząsteczki nanosrebra. Drugi typ stanowiły handlowe skarpety bawełniane (55%) zawierające nanosrebro. Oddziaływanie antagonistyczne było określane w odniesieniu do wybranych bakterii gramdodatnich jak i gramujemnych oraz drożdży. Stwierdzono, że preparat użyty do impregnacji lnianych skarpetek ma szeroki zakres aktywności antagonistycznej przeciwko niektórym gramdodatnim i gramujemnym bakteriom oraz drożdżom Candida albicans. Efektywność przeciwdrobnoustrojowa zależała od rodzaju mikroorganizmu, ilości komórek oraz stężenia nanocząsteczek. Handlowe skarpetki bawełniane wykazały antybakteryjne działanie przeciwko Staphylococcus epidermidis.
Czasopismo
Rocznik
Strony
91--96
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Department of Industrial Products Quality and Ecology, Faculty of Commodity Science, Poznan University of Economics, Poznań, Poland
autor
- Department of Natural Science and Quality Assurance, Faculty of Commodity Science, Poznan University of Economics, Poznań, Poland
autor
- Department of Industrial Products Quality and Ecology, Faculty of Commodity Science, Poznan University of Economics, Poznań, Poland
autor
autor
- Department of Natural Science and Quality Assurance, Faculty of Commodity Science, Poznan University of Economics, Poznań, Poland
Bibliografia
- 1. Gao Y, Cranston R. Recent Advances in Antimicrobial Treatments of Textiles. Textile Research Journal 2008; 78(1): 60-72.
- 2. Ramachandran T, Rajendrakumar K, Rajendran R. Antimicrobial Textiles - an Overview. IE (I) Journal-TX 2004; 84: 42-47.
- 3. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 2009; 27: 76-83.
- 4. Panáek A, Kvítek L, Prucek R, Kolář M, Veeřová R, Pizúrová N, Sharma VK, Nevěná T, Zbořil R. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. Journal of Physical Chemistry 2006; 110(33): 16248-16253.
- 5. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gramnegative bacteria. Journal of Colloid and Interface Science 2004; 275, 1: 177-182.
- 6. Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee YS, Jeong DH, Cho M-H. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology. Biology, and Medicine 2007; 3: 95-101.
- 7. Siddhartha Shrivastava, Tanmay Bera, Arnab Roy, Gajendra Singh, P Ramachandrarao, Debabrata Dash. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007; 18: 225103 (9 pp), Online at: stacks.iop.org/ Nano/18/225103.
- 8. Elechiquerra JL, Brt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. J. Nanobiotechnol 2005; 3 (6): 1-10.
- 9. Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C. Materials Science and Engineering 2008; B, 152: 22-27.
- 10. Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clinica Chimica Acta 2010; 411: 1841-1848.
- 11. Feng QL, Wu J, Chen GQ, Cui FZ, Kim JO. J. Biomed. Mater. Res. 2003; 52: 662-668.
- 12. Dev VR, Venugopal J, Sudha S, Deepika G, Ramakrishna S. Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydrate Polymers 2009; 75(4): 646–650.
- 13. Durán N, Marcato DP, Souza G, Alves O, Esposito E. Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. Journal of Biomedical Nanotechnology 2007; 3: 203-208.
- 14. Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL. New approach to antibacterial treatment of cotton fabric with silver nanoparticle–doped silica using sol–gel process. Journal of Applied Polymer Science 2006; 101, 5: 2938- 2943.
- 15. Mahltig B, Fiedler D, Simon P. Silvercontaining sol-gel coatings on textiles: antimicrobial effect as a function of curing treatment. Journal of the Textile Institute 2011; 15 February.
- 16. Lee HJ, Yeo SY, Jeong SH. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. Journal of Materials Science 2003; 38: 2199-2204.
- 17. El-Rafie MH, Mohamed AA, Shaheen ThI, Hebeish A. Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydrate Polymers 2010; 80: 779-782.
- 18. Ghosh S, Yadav S, Reynolds N. Antibacterial properties of cotton fabric treated with silver nanoparticles. Journal of the Textile Institute 2010; 101, 10: 917-924.
- 19. Yeo SY, Jeong SH. Preparation and Characterization of polypropylene/ Silver nanocomposite fibres. Polymer International 2003; 52: 1053-1057.
- 20. Cieślak M, Schmidt H, Świercz R, Wąsowicz W. TiO2/Ag Modified Carpet Fibres for the Reduction of Nicotine Exposure. Fibres & Textiles in Eastern Europe 2009; 17, 2 (73): 59-65.
- 21. Mikołajczyk T, Szparaga G, Rabiej S, Frączek-Szczypta A. Influence of Formation Conditions on the Structure and Properties of Nanocomposite PAN Fibres Containing Silver and Hydroxyapatite Nanoadditives. Fibres & Textiles in Eastern Europe 2010; 18, 5(82): 16-23.
- 22. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology and Medicine 2009; 5: 382-386.
- 23. Project on Emerging Nanotechnologies. An inventory of nanotechnology-based consumer products currently on the market. Woodrow Wilson International Center for Scholars. http://www.nanotechproject.org/inventories/consumer/. (accessed April 2011).
- 24. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environment International 2011; 37: 517-531.
- 25. Baun A, Hartmann NB, Grieger KD, Hansen SF. Setting the limits for engineered nanoparticles in European surface waters –are current approaches appropriate? Journal of Environmental Monitoring 2009; 11: 1774-1781.
- 26. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, de Jong WH, Van Zijverden M, Sips AJAM, Geertsma RE. Nano-silver a review of available data and knowledge gaps in human. Nanotoxicology 2009; 3(2): 109-138.
- 27. Foltynowicz Z, Kočí V, Rodewald D. Impact of Chosen Consumer Products Containing nanosilver on microorganisms. Zeszyty Naukowe UEP Current Trends in Commodity Science: Selected Quality Problems. 2010; 160: 29-36.
- 28. Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Particle and Fibre Toxicology 2010; 7: 8.
- 29. Benn TM, Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics. Environmental Science & Technology 2008; 42(11): 4133-4139.
- 30. Schneider G. In: 12th Workshop Odour and Emission of Plastic Materials, Kassel, Germany, 15-16 March 2010: 15-1.
- 31. OEKO-TEX Standard 100, General and Special Conditions, Zürich, http:// www.iw.lodz.pl/cms/zalaczone_pliki/ std100_01_2011_deenfr.pdf, 2011. (accessed April 2011).
- 32. Wasif AI, Laga SK. Use of nano silver as antimicrobial agent for cotton. AUTEX Research Journal 2009; 9 (1): 5-13.
- 33. Filipowska B, Rybicki E, Walawska A, Matyjas-Zgondek E. New Method for the Antibacterial and Antifungal Modification of Silver Finished Textiles. FIBRES & TEXTILES in Eastern Europe 2011; 19, 4 (87): 124-128.
- 34. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16: 2346–2353.
- 35. Pal S, Tak YK, Song JM. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli. Applied and Environmental Microbiology 2007; 73, 6: 1712–1720.
- 36. Matyjas-Zgondek E, Bacciarelli A, Rybicki E, Szynkowska MI, Kołodziejczyk M. Antibacterial properties of silverfinished textiles. FIBRES & TEXTILES in Eastern Europe 2008; 16, 5 (70): 101- 107.
- 37. Choi O, Hu Z. Size dependent and reactive oxygen species related nanosilver toxicity to nitryfing bacteria. Environ. Sci. Technol. 2008; 42: 4583-4588.
- 38. Sathishkumar M, Sneha K, Yun Y-S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Biores. Tech. 2010; 101: 7958-7965.
- 39. Shahrokh S, Emtiazi G. Toxicity and unusual biological behaviour of nanosilver on Gram positive and negative bacteria assayed by microtiter-plate. Eur. J. Biol. Sci. 2009; 1(3): 28-31.
- 40. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S., Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater., 2008; 4: 707-716
- 41. Panáček A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R, Kvitek L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009; 30: 6333-6340.
- 42. Kvitek L, Panáček A., Soukupova J., Kolar M., Vecerova R.,Prucek R., Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Physic. Chem.: Part C 2008; 112: 5825-5834.
- 43. Saengkiettiyut K, Rattanawaleedirojn P, Sangsuk S. 3A Study on Antimicrobial Efficacy of Nano Silver Containing Textile. J. Nat. Sci. Special Issue on Nanotechnology 2008; 7(1): 33-36.
- 44. Mahltig B, Haase H. Comparison of the effectiveness of different silver-containing textile products na bacteria and human cells. J. Textile Inst. 2012; 103, 11: 1262-1266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83136a17-d5ad-48c2-915a-bf180d353456