PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real-time monitoring rapid ground subsidence using GNSS and Vondrak filter

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Human activities such as coal mining may cause rapid ground subsidence, which will damage severely on human-built structures such as coal transport railway or buildings, and even kill lives. In coal-mining areas, ground subsidence happens continuously, and its amplitude may be up to 10 cm per day. In order to assure the safety of coal-mining areas, it’s necessary to monitor the ground subsidence timely and precisely. This paper presents a continuously operating real-time global navigation satellite system ground subsidence monitoring system, which consists of hardware, data processing algorithms and software, communication link and peripheral equipment. A particular architecture was designed for field operation. For the data processing, the Vondrak filter is proposed to process the monitoring data. We operated the proposed monitoring system on the coal-mining area and verified the performance during the mining period from early July to December 2017. The monitoring results show that the proposed system has an accuracy of 5 mm for ground subsidence monitoring on the basis of precise leveling data that were simultaneously observed. The proposed method can meet the accuracy requirement of ground subsidence monitoring, and it can provide continuous subsidence information in real time, which cannot be achieved by the traditional leveling surveying method. The monitoring system and data processing method can be applied to the monitoring of ground subsidence in subsidence area as well as geological disasters such as landslides.
Czasopismo
Rocznik
Strony
133--140
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • School of Civil Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • State Key Laboratory of Information Engineering of Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430009, China
autor
  • School of Civil Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
autor
  • School of Civil Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
Bibliografia
  • 1. Abdikan S, Arıkan M, Sanli FB, Cakir Z (2014) Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environ Earth Sci 71:4081–4089
  • 2. Akcin H, Kutoglu HS, Kemaldere H, Deguchi T, Koksal E (2010) Monitoring subsidence effects in the urban area of Zonguldak Hardcoal Basin of Turkey by InSAR-GIS integration. Nat Hazards Earth Syst Sci 10(9):1807–1814
  • 3. Baek J, Kim S-W, Park HJ, Jung HS, Kim KD, Kim JW (2008) Analysis of ground subsidence in coal mining area using SAR interferometry. Geosci J 12(3):277–284
  • 4. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383
  • 5. Demoulin A, Campbell J, De Wulf A (2005) GPS monitoring of vertical ground motion in northern Ardenne-Eifel: five campaigns (1999–2003) of the HARD project. Int J Earth Sci 94(4):515–524
  • 6. Ferretti A, Prati C, Rocca F (2001) Permanent scatteres in SAR interferometry. IEEE Trans Geosci Remote Sens 39:8–20
  • 7. Filin S, Baruch A (2010) Detection of sinkhole hazards using airborne laser scanning data. Photogramm Eng Remote Sens 76:577–587
  • 8. Filin S, Baruch A, Avni Y, Marco S (2011) Sinkhole characterization in the Dead Sea area using airborne laser scanning. Nat Hazards 58:1135–1154
  • 9. Filin S, Avni Y, Baruch A, Morik S, Arav R, Marco S (2014) Characterization of land degradation along the receding Dead Sea coastal zone using airborne laser scanning. Geomorphology 206:403–420
  • 10. Ge L, Chang H-C, Rizos C (2007) Mine subsidence monitoring using multi-source satellite SAR images. Photogramm Eng Remote Sens 73(3):259–266
  • 11. Grewal MS, Andrews AP (2001). Kalman filtering: theory and practice using Matlab. Wiley, New York, pp 14–17, pp 147–148
  • 12. Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:23611. https://doi.org/10.1029/2004gl021737
  • 13. Ince CD, Sahin M (2000) Real-time deformation monitoring with GPS and Kalman filter. Earth Planets Space 52(10):837–840
  • 14. Jung HC, Kim S-W, Jung HS, Min KD, Won JS (2007) Satellite observation of coal mining subsidence by persistent scatterer analysis. Eng Geol 92(1):1–13
  • 15. Kampes BM (2006) Radar interferometry-persistent scatterer technique. Kluwer, Dordrecht
  • 16. Li L, Peng J (2014) Multiple Kalman filters model with shaping filter GPS real-time deformation analysis. Trans Nonferrous Met Soc China 24:3674–3681
  • 17. Mora O, Mallorqu JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans Geosci Remote Sens 41:2243–2253
  • 18. Ng AHM, Chang H-C, Ge L, Rizos C, Omura M (2009) Assessment of radar interferometry performance for ground subsidence monitoring due to underground mining. Earth Planet Space 61(6):733–745
  • 19. Prati C, Ferretti A, Perissin D (2010) Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J Geodyn 49:161–170
  • 20. Tao L, Zhang H, Wang C, Tangn YX (2012) Ground deformation retrieval using quasi coherent targets DInSAR, with application to suburban area of Tianjin, China. IEEE J Sel Top Appl Remote Sens 5(3):867–873
  • 21. Vondrak J (1977) Problem of smoothing data. Bull Astron Inst Czechoslov 28(2):84–89
  • 22. Wang J, Peng X, Xu C (2011) Coal mining GPS subsidence monitoring technology and its application. Min Sci Technol (China) 21:463–467
  • 23. Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinetic geodetic positioning. J Geodesy 2001(75):109–116
  • 24. Zhang Z, Wang C, Tang Y, Fu O, Zhang H (2015a) Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers. Int J Appl Earth Obs Geoinf 39:49–55
  • 25. Zhang Z, Wang C, Tang Y, Fu Q, Zhang H (2015b) Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers. Int J Appl Earth Obs Geoinf 2015(39):49–55
  • 26. Zhao CH, Zhang Q, Wang L (2004) The application research of GPS height difference in landslip monitoring. Bull Surv Mapp 33(4):303–306
  • 27. Zheng D, Zhong P, Ding X, Chen W (2005) Filtering GPS time series using a Vondrak filter and cross-validtaion. J Geod 79(6–7):363–369
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8312a544-f6da-4ecc-b139-946d764ece9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.