PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A weighted wrapper approach to feature selection

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper considers feature selection as a problem of an aggregation of three state-of-the-art filtration methods: Pearson’s linear correlation coefficient, the ReliefF algorithm and decision trees. A new wrapper method is proposed which, on the basis of a fusion of the above approaches and the performance of a classifier, is capable of creating a distinct, ordered subset of attributes that is optimal based on the criterion of the highest classification accuracy obtainable by a convolutional neural network. The introduced feature selection uses a weighted ranking criterion. In order to evaluate the effectiveness of the solution, the idea is compared with sequential feature selection methods that are widely known and used wrapper approaches. Additionally, to emphasize the need for dimensionality reduction, the results obtained on all attributes are shown. The verification of the outcomes is presented in the classification tasks of repository data sets that are characterized by a high dimensionality. The presented conclusions confirm that it is worth seeking new solutions that are able to provide a better classification result while reducing the number of input features.
Rocznik
Strony
685--696
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
autor
  • Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Faculty of Electrical and Computer Engineering, Rzeszów University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G. and Yu, D. (2014a). Convolutional neural networks for speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing 22(10): 1533–1545.
  • [2] Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn, G. and Yu, D. (2014b). Convolutional neural networks for speech recognition, IEEE/ACM Transactions on Audio, Speech, and Language Processing 22(10): 1533–1545.
  • [3] Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B., Sodano, H. and Inman, D.J. (2018). 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data, Neurocomputing 275: 1308–1317.
  • [4] Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D.J. (2017). Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks, Journal of Sound and Vibration 388: 154–170.
  • [5] Awada, W., Khoshgoftaar, T.M., Dittman, D., Wald, R. and Napolitano, A. (2012). A review of the stability of feature selection techniques for bioinformatics data, IEEE 13th International Conference on Information Reuse & Integration (IRI), Las Vegas, USA, pp. 356–363.
  • [6] Azizjon, M., Jumabek, A. and Kim, W. (2020). 1D CNN based network intrusion detection with normalization on imbalanced data, International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, pp. 218–224.
  • [7] Benesty, J., Chen, J., Huang, Y. and Cohen, I. (2009). Pearson correlation coefficient, in J. Benesty and W. Kellermann (Eds.), Noise Reduction in Speech Processing, Springer Topics in Signal Processing, Springer, Berlin, pp. 1–4.
  • [8] Bolón-Canedo, V., Sánchez-Maroño, N. and Alonso-Betanzos, A. (2013). A review of feature selection methods on synthetic data, Knowledge and Information Systems 34(3): 483–519.
  • [9] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees, CRC Press, Boca Raton.
  • [10] Broughton, R., Coope, I., Renaud, P. and Tappenden, R. (2010). Determinant and exchange algorithms for observation subset selection, IEEE Transactions on Image Processing 19(9): 2437–2443.
  • [11] Cannas, L.M., Dessì, N. and Pes, B. (2013). Assessing similarity of feature selection techniques in high-dimensional domains, Pattern Recognition Letters 34(12): 1446–1453.
  • [12] Devijver, P. and Kittler, I. (1982). Pattern Recognition: A Statistical Approach, Prentice-Hall, Englewood Cliffs.
  • [13] Dua, D. and Graff, C. (2017). UCI Machine Learning Repository, http://archive.ics.uci.edu/ml.
  • [14] El Aboudi, N. and Benhlima, L. (2016). Review on wrapper feature selection approaches, International Conference on Engineering & MIS (ICEMIS), Agadir, Morocco, pp. 1–5.
  • [15] Eren, L. (2017). Bearing fault detection by one-dimensional convolutional neural networks, Mathematical Problems in Engineering 2017: 1–9.
  • [16] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research 3: 1157–1182.
  • [17] Hajj, N., Rizk, Y. and Awad, M. (2019). A subjectivity classification framework for sports articles using cortical algorithms for feature selection, Neural Computing and Applications 31: 8069–8085.
  • [18] Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M. and Inman, D.J. (2021). 1D convolutional neural networks and applications: A survey, Mechanical Systems and Signal Processing 151: 107398.
  • [19] Kiranyaz, S., Ince, T. and Gabbouj, M. (2015a). Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Transactions on Biomedical Engineering 63(3): 664–675.
  • [20] Kiranyaz, S., Ince, T. and Gabbouj, M. (2015b). Real-time patient-specific ECG classification by 1-D convolutional neural networks, IEEE Transactions on Biomedical Engineering 63(3): 664–675.
  • [21] Kohavi, R. and John, G.H. (1997). Wrappers for feature subset selection, Artificial Intelligence 97(1): 273–324.
  • [22] Koziarski, M. and Cyganek, B. (2018). Impact of low resolution on image recognition with deep neural networks: An experimental study, International Journal of Applied Mathematics and Computer Science 28(4): 735–744, DOI: 10.2478/amcs-2018-0056.
  • [23] Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017). Imagenet classification with deep convolutional neural networks, Communications of the ACM 60(6): 84–90.
  • [24] Kusy, M., Zajdel, R., Kluska, J. and Zabinski, T. (2020). Fusion of feature selection methods for improving model accuracy in the milling process data classification problem, International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, pp. 1–8.
  • [25] LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning, Nature 521(7553): 436–444.
  • [26] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278–2324.
  • [27] Li, Y., Hsu, D.F. and Chung, S.M. (2013). Combination of multiple feature selection methods for text categorization by using combinatorial fusion analysis and rank-score characteristic, International Journal on Artificial Intelligence Tools 22(02): 1350001.
  • [28] Lu, J., Zhao, T. and Zhang, Y. (2008). Feature selection based-on genetic algorithm for image annotation, Knowledge-Based Systems 21(8): 887–891.
  • [29] Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R. and Consonni, V. (2013). Quantitative structure-activity relationship models for ready biodegradability of chemicals, Journal of Chemical Information and Modeling 53(4): 867–878.
  • [30] Narendra, P.M. and Fukunaga, K. (1977). A branch and bound algorithm for feature subset selection, IEEE Transactions on Computers 26(09): 917–922.
  • [31] Pes, B. (2020). Ensemble feature selection for high-dimensional data: A stability analysis across multiple domains, Neural Computing and Applications 32(10): 5951–5973.
  • [32] Robnik-Šikonja, M. and Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF, Machine Learning 53(1–2): 23–69.
  • [33] Rodrigues, D., Pereira, L.A., Nakamura, R.Y., Costa, K.A., Yang, X.-S., Souza, A.N. and Papa, J.P. (2014). A wrapper approach for feature selection based on bat algorithm and optimum-path forest, Expert Systems with Applications 41(5): 2250–2258.
  • [34] Rokach, L., Chizi, B. and Maimon, O. (2006). Feature selection by combining multiple methods, in M. Last et al. (Eds), Advances in Web Intelligence and Data Mining, Springer, Berlin/Heidelberg, pp. 295–304.
  • [35] Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach, Prentice Hall, Englewood Cliffs.
  • [36] Scherer, D., M¨uller, A. and Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition, International Conference on Artificial Neural Networks, Thessaloniki, Greece, pp. 92–101.
  • [37] Vergara, J.R. and Estévez, P.A. (2014). A review of feature selection methods based on mutual information, Neural Computing and Applications 24(1): 175–186.
  • [38] Wang, Y., Zhang, D. and Dai, G. (2020). Classification of high resolution satellite images using improved U-Net, International Journal of Applied Mathematics and Computer Science 30(3): 399–413, DOI: 10.34768/amcs-2020-0030.
  • [39] Whitney, A.W. (1971). A direct method of nonparametric measurement selection, IEEE Transactions on Computers 100(9): 1100–1103.
  • [40] Wuniri, Q., Huangfu, W., Liu, Y., Lin, X., Liu, L. and Yu, Z. (2019). A generic-driven wrapper embedded with feature-type-aware hybrid Bayesian classifier for breast cancer classification, IEEE Access 7: 119931–119942.
  • [41] Zajdel, R., Kusy, M., Kluska, J. and Zabinski, T. (2020). Weighted feature selection method for improving decisions in milling process diagnosis, in L. Rutkowski et al. (Eds), Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, Vol. 12415, Part I, Springer, Cham, pp. 280–291.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-83126d2b-dff9-44bf-8bf7-a89e427124cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.