PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Skew Bending of Aircraft Fuselage Panels with “L” and “C” Stringers Mounted by Hybrid Joint

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ukośne zginanie poszycia samolotu z u sztywnieniami typu “L” i “C”, mocowanymi za pomocą złącza hybrydowego
Języki publikacji
EN
Abstrakty
EN
A section of fuselage skin with dimension 30 x 200 mm was subjected to numerical study and loaded by skew bending (Fig. 3). The thickness of the skin was 0,6 mm, the length of a leg of an angle “L” profile stringer was 12 mm with 1mm thickness. The angle of inclination α of the load plane to the skin plane varies in the range from 10° to 90° with 10° increment. The elastic - plastic material model of D16T aluminum alloy was used in simulations of the fuselage skin as well as for “L” and “C” profile stringers. In the material model description damage of aluminum alloy was taken into account. An adhesive layer with thickness of 0,1mm was modeled using cohesive elements with the failure mode depending on the shear strength and the tensile strength. The paper presents a comparative analysis of the considered structural elements with application of the unsymmetrical “L” profile or the symmetrical “C” profile with the same cross section area. All numerical studies were performed in Abaqus program. Finally, one can conclude that the stiffness of the structural element with application of the symmetrical “C” profile stringer is stronger, whereas the mechanical response of both versions of the hybrid joint significantly depends on the angle of load inclination α.
PL
Badaniom numerycznym poddano wycinek poszycia o wymiarach 30x200mm, który następnie poddano obciążeniu poprzez ukośne zginanie, Rys. 3. Grubość blachy poszycia wynosiła 0,6 mm, długość ramienia kątownika równoramiennego 12 mm i grubość ramienia 1mm. Kąt nachylenia α płaszczyzny obciążenia w stosunku do płaszczyzny poszycia zmieniał się w granicach od 10° do 90° z przyrostem co 10°. W symulacjach zastosowano model sprężysto – plastyczny materiału dla poszycia i kształtownika jakim był stop aluminium D16T. W opisie modelu materiału uwzględniono także uszkodzenie stopu aluminium. Warstewka kleju o grubości 0,1 mm była modelowana z wykorzystaniem elementów kohezyjnych, dla których także uwzględniono uszkodzenie przyjmując dane producenta, takiej jak wytrzymałość na ścinanie oraz na rozciąganie. W pracy przedstawiono analizę wpływu zmiany obecnie stosowanego niesymetrycznego kształtownika (kątownik), kształtownikiem symetrycznym (ceownik) o takim samym polu przekroju poprzecznego. Wszystkie badania numeryczne przeprowadzono w programie Abaqus.
Twórcy
autor
  • Lublin University of Technology, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Lublin University of Technology, 40 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • [1] V. Birman, L.V. Bryd, Modelling and analysis of functionally graded materials and structures, Applied Mechanics Review 60, 195-216 (2007).
  • [2] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip, International Journal of Fracture 127, 135-140 (2004).
  • [3] T. Sadowski, M. Boniecki, Z. Librant, K. Nakonieczny, Theoretical prediction and experimental verification of temperature distribution in FGM cylindrical plates subjected to thermal shock, International Journal of Heat and Mass Transfer 50, 4461-4467 (2007).
  • [4] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side - comparison of two applied methods for problem solution, Computational Materials Science 45, 624-632 (2009).
  • [5] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM, Computational Materials Science 44, 1307-1311 (2009).
  • [6] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns, Computational Materials Science 43, 171-178 (2008).
  • [7] M. Birsan, H. Altenbach., T. Sadowski, V. Eremeyev, D. Pietras, Deformation analysis of functionally graded beams by the direct approach, Composites: Part B 43, 1315-1328 (2012).
  • [8] I. Ivanov, T. Sadowski, D. Pietras, Crack propagation In functionally graded strip, European Physical Journal Special Topics 222, 1587-1595 (2013).
  • [9] V. Petrova, T. Sadowski, Theoretical modeling and analysis of thermal fracture of semi-infinite functionally graded materials with edge cracks, Meccanica 49, 2603-2615 (2014).
  • [10] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Computational Materials Science 34, 46-63 (2005).
  • [11] T. Sadowski, S. Hardy, E. Postek, A new model for the timedependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension, Materials Science Engineering A 424, 230-238 (2006).
  • [12] T. Sadowski, E. Postek, Ch. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers, Computational Materials Science 39, 230-236 (2007).
  • [13] T. Sadowski, T. Nowicki, Numerical investigation of local mechanical properties of WC/Co composite, Computational Materials Science 43, 235-241(2008).
  • [14] H. Dębski, T. Sadowski, Modelling of microcracks initation and evolution along interfaces of the WC/Co composite by the finite element method, Computational Materials Science 83, 403-411 (2014).
  • [15] T. Sadowski, P. Golewski, Heat transfer and stress concentrations in a two-phase polycrystalline composite structure. Part I: Theoretical modelling of heat transfer, Materialwissenschaft und Werkstofftechnik 44, 497-505 (2013).
  • [16] J. Bieniaś, H. Dębski, B. Surowska, T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM, Computational Materials Science 64, 168-172 (2012).
  • [17] J. Gajewski, T. Sadowski, Sensitivity analysis of crack propagation in pavement bituminous layered structures using a hybrid system integrating artificial neural networks and finite element method, Computational Materials Science 82, 114-117 (2014).
  • [18] A.V. Pocius, Adhesion and adhesives technology, Hasner, New York 1997.
  • [19] R. D. Adams, J. Comyn, W.C. Wake, Structural adhesive joints in engineering. 2nd ed. Chapman&Hall, London 1997.
  • [20] L. F. M. da Silva, A. Öchsner (Eds), Modelling of adhesively bonded joints, Springer (2008).
  • [21] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints - Part I: Literature survey, International Journal of Adhesive and Adhesives 29, 319-330 (2009).
  • [22] L. F. M. da Silva, P. J. C. das Neves, R. D. Adams, J. K. Spelt, Analytical models of adhesively bonded joints - Part II: Comparative study, International Journal of Adhesive and Adhesives 29, 331-341, (2009).
  • [23] L. F. M. da Silva, A. Öchsner, R. D. Adams, Handbook of Adhesion Technology, Springer 2011.
  • [24] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Computational Materials Science 50, 1326-1335 (2011).
  • [25] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Computational Materials Science 52, 293-297 (2012).
  • [26] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Computational Materials Science 64, 285-288 (2012).
  • [27] T. Sadowski, P. Golewski, The analysis of heat transfer and thermal stresses in thermal barrier coatings under exploitation, Defect and Diffusion Forum 326-328, 530-535 (2012).
  • [28] Z. Wu, J. Li, D. Timmer, K. Lorenzo, S. Bose, Study of processing variables on the electrical resistivity of conductive adhesives, International Journal of Adhesive and Adhesives 29, 488-494 (2009).
  • [29] H. Zhao, T. Liang, B. Liu, Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles, International Journal of Adhesive and Adhesives 27, 429-433 (2007).
  • [30] L. F.M. da Silva, A. Öchsner, A. Pirondi (Eds), Hybrid adhesive joints, Springer (2011).
  • [31] T. Sadowski, M. Kneć, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets, International Journal of Adhesive and Adhesives 30, 338-346 (2010).
  • [32] T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets, Computational Materials Science 50, 1256-1262 (2011).
  • [33] S.M.H. Darwish, Science of weld-adhesive joints, in da Silva, L.F.M., Pirondi, A., Öchsner A. (Eds), Hybrid adhesive joints, (Springer, 2011) p. 1-36.
  • [34] T. Sadowski, M. Kneć, P. Golewski, Spot welding-adhesive joints: modelling and testing, Journal of Adhesion, 90, 346-364, (2014).
  • [35] A. Pirondi, F. Moroni, Science of Clinch-Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials, Volume 6, Springer 2011, L.F.M. da Silva, A. Pirondi, A. Öschner (Eds), pp109-147.
  • [36] J. Varis, Ensuring the integrity in clinching process, Journal Materials Processing Technology 174, 277-285 (2006).
  • [37] J. Varis, J. Lepistö, A simple testing-based procedure and simulation of the clinching process using finite element analysis for establishing clinching parameters, Thin Walled Structures 41, 691-709 (2003).
  • [38] M. Oudjenea, L. Ben-Ayed, On the parametrical study of clinch joining of metallic sheets using the Taguchi method, Engineering Structures 30, 1782-1788 (2008).
  • [39] T. Sadowski, T. Balawender, Technology of Clinch - Adhesive Joints, in Hybrid adhesive joints. Advanced Structured Materials, Volume 6, Springer 2011, L.F.M. da Silva, A. Pirondi, A. Öschner (Eds), pp149-176.
  • [40] F. Moroni, A. Pirondi, F. Kleiner, Experimental analysis and comparison of the strength of simple and hybrid structural joints, International Journal of Adhesive and Adhesives 30, 367-379 (2010).
  • [41] T. Balawender, T. Sadowski, Experimental and numerical analyses of clinched and adhesively bonded hybrid joints, Journal of Adhesion Science and Technology 25, 2391-2407 (2011).
  • [42] T. Balawender, T. Sadowski, M. Kneć, Technological problems and experimental investigation of hybrid: clinched - adhesively bonded joint, Archives of Metallurgy and Materials 56, 439-446 (2011).
  • [43] D. Reitemeyera, V. Schultza, F. Syassenb, T. Seefelda, F. Vollertsena, Laser welding of large scale stainless steel aircraft structures, Physics Procedia 41, 106 - 111 (2013).
  • [44] V. N. Burlayenko, H. Altenbach, T. Sadowski, An evaluation of displacement-based finite element models used for free vibration analysis of homogeneous and composite plates, Journal of Sound and Vibration 358, 4, 152-175 (2015).
  • [45] T. Sadowski, M. Kneć, P. Golewski, Fatigue response of the hybrid joints obtained by hot spot welding and bonding techniques, Key Engineering Materials 601, 25-28 (2014).
  • [46] A. Higgins, Adhesive bonding of aircraft structures, International Journal of Adhesion and Adhesives 20, 367-376 (2000).
  • [47] Z.B. Yang, W. Tao, L.Q. Li, Y.B. Chen, F.Z. Li, Y.L. Zhang, Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: Process, microstructure, and mechanical properties, Materials and Design 33, 652-658 (2012).
  • [48] G. Golewski, T. Sadowski, An analysis of shear fracture toughness KIIc and mictrostructure in concrete containing flyash. Construction and Building Materials 51, 207-214 (2014).
  • [49] M. C. Simmons, G. K. Schleyer, Pulse pressure loading of aircraft structural panels, Thin-Walled Structures 44, 496-506 (2006).
  • [50] T. Sadowski, M. Birsan, D.Pietras, Numerical analysis of multilayered and FGM structural elements under mechanical and thermal loads. Comparison of the finite elements and analytical models”, Arch. of Civil and Mechanical Engineering 15, 1180-1192 (2015).
  • [51] T. Sadowski, T. Balawender, R. Śliwa, P. Golewski, M. Kneć, Modern hybrid joints in aerospace: Modelling and testing, Archives of Metallurgy and Materials 58, 163-169 (2013).
  • [52] T. Sadowski, P. Golewski, Numerical study of the prestressed connectors and their distribution on the strength of a single lap, a double lap and hybrid joints subjected to uniaxial tensile test, Archives of Metallurgy and Materials 58, 581-587 (2013).
  • [53] T. Sadowski, P. Golewski, Effect of tolerance in the fitting of rivets in the holes of double lap joints subjected to uniaxial tension, Key Engineering Materials 607, 49-54 (2014).
  • [54] T. Balawender, T. Sadowski and P. Golewski, Experimental and Numerical Analyses of Clinched and Adhesively Bonded Hybrid Joints, Journal of Adhesion Science and Technology 25, 2391-2407 (2011).
  • [55] T. Balawender, T. Sadowski, P. Golewski, Numerical analysis and experiments of the clinch-bonded joint subjected to uniaxial tension, Computational Materials Science 64, 270 -272 (2012).
  • [56] T. Sadowski, P. Golewski, M. Kneć, Experimental investigation and numerical modelling of spot welding-adhesive joints response, Composite Structures 112, 66-77 (2014).
  • [57] P. Buermann, R. Rolfes, J. Tessmer, M. Schagerl, A semianalytical model for local post-buckling analysis of stringerand frame-stiffened cylindrical panels, Thin-Walled Structures 44, 102-114, (2006).
  • [58] A. C. Orifici, R. S. Thomson, I. Herszberg, T. Weller, R. Degenhardt, J. Bayandor, An analysis methodology for failure in postbuckling skin-stiffener interfaces, Composite Structures 86, 186-193 (2008).
  • [59] M. Heitmann, P. Horst, A new analysis model for the effective stiffness of stiffened metallic panels under combined compression and shear stress, Aerospace Science and Technology 10, 316-326 (2006).
  • [60] J. Bertolini, B. Castanié, J-J Barrau, J-P Navarro, An experimental and numerical study on omega stringer debonding, Composite Structures 86, 233-242 (2008).
  • [61] E. Greenhalgh, S. M. Bishop, D. Bray, D. Hughes, S. Lahiff, B. Millson, Characterisation of impact damage in skinstringercomposite structures, Composite Structures 36, 187-207 (1996).
  • [62] L. Jun, L. Yulong, G. Xiaosheng, Y. Xiancheng, A numerical model for bird strike on sidewall structure of an aircraft nose, Chinese Journal of Aeronautics 27, 542-549 (2014).
  • [63] S. Chintapalli, M. S.A. Elsayed, R. Sedaghati, M. Abdo, The development of a preliminary structural design optimization method of an aircraft wing-box skin-stringer panels, Aerospace Science and Technology 14, 188-198 (2010).
  • [64] B. Liua, L. Fenga, A. Nilsson, Sound transmission through curved aircraft panels with stringer and ring frame attachments, Journal of Sound and Vibration 300, 949-973 (2007).
  • [65] A. Needleman, A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics 54, 525-531 (1987).
  • [66] V. Tvergaard, J. Hutchinson, The relation between crack growth resistance and fracture process parameters in elasticplastic solids, Journal of Mechanics and Physics of Solids 40, 1377-1397 (1992).
  • [67] E. Postek, T. Sadowski, Assessing the influence of porosity in the deformation of metal-ceramic composites, Composite Interfaces 18, 57-76 (2011).
  • [68] V. Burlayenko, T. Sadowski, Influence of skin/core debonding on free vibration behaviour of foam and honeycomb cored sandwich plates, International Journal of Non-Linear Mechanics 45, 959-968 (2010).
  • [69] V. Burlayenko, T. Sadowski, Analysis of structural performance of aluminium sandwich plates with foam-filled hexagonal foam, Computational Materials Science 45, 658-662 (2009).
  • [70] V. Burlayenko, T. Sadowski, Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modeling, Composite Structures 108, 354-366 (2014).
  • [71] V. Burlayenko, T. Sadowski, Transient dynamic response of debonded sandwich plates predicted with the finite element, Meccanica 49, 2617-2633 (2014).
  • [72] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress. Computational Materials Science 45, 693-697 (2009).
  • [73] T. Sadowski, L. Marsavina, N. Peride, E.-M. Craciun, Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods, Computational Materials Science 46, 687-693 (2009).
  • [74] L. Marsavina, T. Sadowski, Kinked cracks at a bi-material ceramic interface - numerical determination of fracture parameters. Computational Materials Science 44, 941-950 (2009).
  • [75] G. Golewski, P. Golewski, T. Sadowski, Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Computational Materials Science 62, 75-78 (2012).
  • [76] V. Burlayenko, T. Sadowski, A numerical study of the dynamic response of sandwich plates initially damaged by low-velocity impact. Computational Materials Science 52, 212-216 (2012).
  • [77] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Computational Materials Science 43, 75-81 (2008).
  • [78] T. Sadowski, L. Marsavina, Multiscale Modelling of Twophase Ceramic Matrix Composites, Computational Materials Science 50, 1336-1346 (2011).
  • [79] T. Sadowski, Gradual degradation in two-phase ceramic composites under compression, Computational Materials Science 64, 209-211 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8310957f-416b-431e-af84-28745eab40d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.